Какая частота у процессора интел пентиум 4. Процессоры Intel Pentium4 LGA775


Казалось бы не так уж и давно вышел Pentium 4 2,8 ГГц, но неугомонная компания Intel видать настолько горда способностью своего нового процессорного ядра к постоянному «разгону», что не дает нам покоя анонсами все новых и новых процессоров:). Однако сегодняшний наш герой отличается от предыдущей топовой модели не только на 200 с небольшим мегагерц — то, о чем давно мечтали некоторые особо продвинутые пользователи, наконец-то свершилось: технология эмуляции двух процессоров на одном процессорном ядре, ранее бывшая достоянием лишь сверхдорогих Xeon, наконец-то «освобождена» и отправлена в «свободное десктопное плавание». Хотите двухпроцессорный домашний компьютер? Их есть у нас! Все последующие модели Pentium 4, начиная с рассматриваемой в этом материале, будут обладать поддержкой Hyper-Threading. Однако кто-то может вполне резонно поинтересоваться: «А зачем мне двухпроцессорная машина дома? У меня же не сервер какой-нибудь!». И действительно — зачем? Именно это мы и постарались объяснить ниже. Итак: Hyper-Threading — что это такое и зачем он может быть нужен в обычных персональных компьютерах?

SMP и Hyper-Threading: «галопом по европам»

Для начала, давайте сделаем вид, что начинаем «с чистого листа» т. е. механизмы функционирования многопроцессорных систем нам неизвестны. Мы не собираемся начинать данной статьей цикл монографий, посвященных этому вопросу:), поэтому сложных моментов, связанных, к примеру, с виртуализацией прерываний и прочими вещами, трогать не будем. Фактически, нам нужно просто представлять как работает классическая SMP(Symmetric Multi-Processor)-система с точки зрения обычной логики. Нужно это хотя бы потому, что не так уж велико количество пользователей, хорошо себе представляющих как работает SMP-система, и в каких случаях от использования двух процессоров вместо одного можно ожидать реального увеличения быстродействия, а в каких — нет. Честное слово, один из авторов этого материала как-то угробил часа полтора времени, доказывая своему, скажем так, «не бедному» другу, что Unreal Tournament у него на многопроцессорной машине будет работать ничуть не быстрее, чем на обычной:). Смешно? Уверяю вас — только со стороны. Итак, представим, что у нас есть, к примеру, два процессора (остановимся на этом, самом простом примере) вместо одного. Что это нам дает?

В общем-то… ничего. Потому что в дополнение к этому нам нужна еще и операционная система, умеющая эти два процессора задействовать. Система эта должна быть по определению многозадачной (иначе никакого смысла в наличии двух CPU просто быть не может), но кроме этого, ее ядро должно уметь распараллеливать вычисления на несколько CPU. Классическим примером многозадачной ОС, которая этого делать не умеет, являются все ОС от Microsoft, называемые обычно для краткости «Windows 9x» — 95, 95OSR2, 98, 98SE, Me. Они просто-напросто не могут определить наличие более чем одного процессора в системе… ну и, собственно, дальше объяснять уже нечего:). Поддержкой SMP обладают ОС этого же производителя, построенные на ядре NT: Windows NT 4, Windows 2000, Windows XP. Также в силу своих корней, этой поддержкой обладают все ОС, основанные на идеологии Unix — всевозможные Free- Net- BSD, коммерческие Unix (такие как Solaris, HP-UX, AIX), и многочисленные разновидности Linux. Да, к слову — MS DOS многопроцессорность в общем случае тоже «не понимает»:).

Если же два процессора все же определились системой, то дальнейший механизм их задействования в общем-то (на «логическом», подчеркнем, уровне!) довольно-таки прост. Если в данный момент времени исполняется одно приложение — то все ресурсы одного процессора будут отданы ему, второй же будет просто простаивать. Если приложений стало два — второе будет отдано на исполнение второму CPU, так что по идее скорость выполнения первого уменьшиться не должна вообще никак. Это в примитиве. Однако на самом деле все сложнее. Для начала: исполняемое пользовательское приложение у нас может быть запущено всего одно, но количество процессов (т. е. фрагментов машинного кода, предназначенных для выполнения некой задачи) в многозадачной ОС всегда намного больше. Начнем с того, что сама ОС — это тоже приложение… ну и не будем углубляться — логика понятна. Поэтому на самом деле второй CPU способен немного «помочь» даже одиночной задаче, взяв на себя обслуживание процессов, порожденных операционной системой. Опять-таки, к слову об упрощениях — именно так, идеально, разделить CPU между пользовательским приложением и ОС, конечно, все равно не получится, но, по крайней мере, процессор, занятый исполнением «полезной» задачи, будет меньше отвлекаться.

Кроме того, даже одно приложение может порождать потоки (threads), которые при наличии нескольких CPU могут исполняться на них по отдельности. Так, например, поступают почти все программы рендеринга — они специально писались с учетом возможности работы на многопроцессорных системах. Поэтому в случае использования потоков выигрыш от SMP иногда довольно весо м даже в «однозадачной» ситуации. По сути, поток отличается от процесса только двумя вещами — он во-первых никогда не порождается пользователем (процесс может запустить как система, так и человек, в последнем случае процесс = приложение; появление потока инициируется исключительно запущенным процессом), и во-вторых — поток умирает вместе с родительским процессом независимо от своего желания — к примеру, если родительский процесс «глюкнул и упал» — все порожденные им потоки ОС считает бесхозными и «прибивает» уже сама, автоматически.

Также не стоит забывать, что в классической SMP-системе оба процессора работают каждый со своим кэшем и набором регистров, но память у них общая. Поэтому если две задачи одновременно работают с ОЗУ, мешать они друг другу будут все равно, даже если CPU у каждой «свой собственный». Ну и наконец последнее: в реальности мы имеем дело не с одним, не с двумя, и даже не с тремя процессами. На приведенном коллаже (это действительно коллаж, потому что со скриншота Task Manager были удалены все пользовательские процессы, т. е. приложения, запускаемые «для работы») хорошо видно, что «голая» Windows XP, сама по себе, не запустив еще ни одного приложения, уже породила 12 процессов, причем многие из них к тому же еще и многопоточные, и общее количество потоков достигает двухсот восьми штук (!!!).

Поэтому рассчитывать на то, что нам удастся прийти к схеме «по собственному CPU на каждую задачу» совершенно не приходится, и переключаться между фрагментами кода процессоры будут все равно — и физические, и виртуальные, и будь они хоть виртуальные в квадрате и по 10 штук на каждое физическое ядро:). Впрочем, на самом деле все не так грустно — при грамотно написанном коде ничего в данный момент не делающий процесс (или поток) процессорного времени практически не занимает (это тоже видно на коллаже).

Теперь, разобравшись с «физической» многопроцессорностью, перейдем к Hyper-Threading. Фактически — это тоже многопроцессорность, только… виртуальная. Ибо процессор Pentium 4 на самом деле один — вот он, стоит в сокете, сверху кулер пришлепнут:). Второго сокета — нет. А процессоров ОС видит — два. Как это? В общем-то, очень просто. Смотрим на рисунок.

Здесь нам придется все-таки немного углубиться в технические детали, потому что иначе, увы, что-либо объяснить не получится. Впрочем, те, кому оные детали неинтересны, могут данный абзац просто пропустить. Итак, классическому «одноядерному» процессору в нашем случае добавили еще один блок AS — IA-32 Architectural State. Architectural State содержит состояние регистров (общего назначения, управляющих, APIC, служебных). Фактически, AS#1 плюс единственное физическое ядро (блоки предсказания ветвлений, ALU, FPU, SIMD-блоки и пр.) представляет из себя один логический процессор (LP1), а AS#2 плюс все то же физическое ядро — второй логический процессор (LP2). У каждого LP есть свой собственный контроллер прерываний (APIC — Advanced Programmable Interrupt Controller) и набор регистров. Для корректного использования регистров двумя LP существует специальная таблица — RAT (Register Alias Table), согласно данным в которой можно установить соответствие между регистрами общего назначения физического CPU. RAT у каждого LP своя. В результате мы получили схему, при которой на одном и том же ядре могут свободно выполняться два независимых фрагмента кода т. е. де-факто — многопроцессорную систему!

Hyper-Threading: совместимость

Кроме того, возвращаясь к вещам практическим и приземленным, хотелось бы затронуть еще один немаловажный аспект: не все ОС, даже поддерживающие многопроцессорность, могут работать с таким CPU как с двумя . Связано это с таким «тонким» моментом, как изначальное определение количества процессоров при инициализации операционной системы. Intel прямо говорит, что ОС без поддержки ACPI второй логический процессор увидеть не смогут. Кроме того, BIOS системной платы также должен уметь определять наличие процессора с поддержкой Hyper-Threading и соответствующим образом «рапортовать» системе. Фактически, применительно, к примеру, к Windows, это означает, что «в пролете» у нас оказывается не только линейка Windows 9x, но и Windows NT — последняя ввиду отсутствия поддержки ACPI не сможет работать с одним новым Pentium 4 как с двумя. А вот что приятно — это то, что несмотря на заблокированную возможность работы с двумя физическими процессорами, с двумя логическими, получаемыми с помощью Hyper-Threading, сможет работать Windows XP Home Edition. А Windows XP Professional, кстати, несмотря на ограничение количества физических процессоров до двух, при двух установленных CPU с поддержкой Hyper-Threading честно «видит» четыре:).

Теперь немного о «железе». То, что новые CPU с частотой более 3 ГГц могут потребовать замены системной платы, знают, наверное, уже все — земля (а точнее — Internet) слухами полнится уже давно. К сожалению, это на самом деле так. Даже при номинальном сохранении все того же процессорного разъема Socket 478 Intel не удалось оставить в неприкосновенности потребляемую мощность и тепловыделение новых процессоров — потребляют они больше, и греются, соответственно, тоже. Можно предположить (хоть это и не подтверждено официально), что увеличение потребления по току связано не только с ростом частоты, но и с тем, что из-за ожидаемого использования «виртуальной многопроцессорности» нагрузка на ядро в среднем вырастет, следовательно, возрастет и средняя потребляемая мощность. «Старые» системные платы в некоторых случаях могут быть совместимы с новыми CPU — но только если делались «с запасом». Грубо говоря, те производители, которые делали свои PCB в соответствии с рекомендациями самой Intel относительно потребляемой Pentium 4 мощности, оказались в проигрыше по отношению к тем, кто немного «перестраховался», поставив на плату VRM с запасом и соответствующим образом ее разведя. Но и это еще не все. Кроме ОС, BIOS и электроники платы, с технологией Hyper-Threading должен быть совместим еще и чипсет . Поэтому счастливыми обладателями двух процессоров по цене одного:) смогут стать только те, чья системная плата основана на одном из новых чипсетов с поддержкой 533 МГц FSB: i850E, i845E, i845PE/GE. Несколько особняком стоит i845G — первая ревизия этого набора микросхем Hyper-Threading не поддерживает , более поздняя — уже совместима.

Ну, вот, вроде бы с теорией и совместимостью разобрались. Но не будем спешить. ОК, у нас есть два «логических» процессора, у нас есть Hyper-Threading, вау! — это круто. Но как уже было сказано выше, физически у нас процессор как был один, так и остался. Зачем же тогда нужна такая сложная «эмуляционная» технология, отбрасывая то, что можно горделиво демонстрировать Task Manager с графиками загруженности двух CPU друзьям и знакомым?

Hyper-Threading: зачем она нужна?

Против обыкновения, в этой статье мы немного больше чем обычно уделим внимания рассуждениям т. е. не технической прозе (где все в общем-то довольно однозначно трактуется и на основании одних и тех же результатов совершенно независимые люди чаще всего делают тем не менее весьма похожие выводы), а «технической лирике» — т. е. попытке понять, что же такое нам предлагает Intel и как к этому следует относиться. Я уже неоднократно писал в «Колонке редактора» на нашем сайте, и повторю здесь, что эта компания, если внимательно посмотреть, никогда не отличалась абсолютным совершенством своих продуктов, более того — вариации на те же темы от других производителей подчас получались гораздо более интересными и концептуально стройными. Однако, как оказалось, абсолютно все делать совершенным и не нужно — главное чтобы чип олицетворял собой какую-то идею, и идея эта приходилась очень вовремя и к месту. И еще — чтобы ее просто не было у других.

Так было с Pentium, когда Intel противопоставила весьма шустрому в «целочисленке» AMD Am5x86 мощный FPU. Так было с Pentium II, который получил толстую шину и быстрый кэш второго уровня, благодаря чему за ним так и не смогли угнаться все процессоры Socket 7. Так было (ну, по крайней мере, я считаю это свершившимся фактом) и с Pentium 4, который противопоставил всем остальным наличие поддержки SSE2 и быстрый рост частоты — и тоже де-факто выиграл. Сейчас Intel предлагает нам Hyper-Threading. И мы отнюдь не призываем в священной истерике биться лбом о стенку и кричать «господи помилуй», «аллах велик» или «Intel rulez forever». Нет, мы просто предлагаем задуматься — почему производитель, известный грамотностью своих инженеров (ни слова про маркетологов! :)) и громадными суммами, которые он тратит на исследования, предлагает нам эту технологию.

Объявить Hyper-Threading «очередной маркетинговой штучкой», конечно, проще простого. Однако не стоит забывать, что это технология , она требует исследований, денег на разработку, времени, сил… Не проще ли было нанять за меньшую сумму еще одну сотню PR-менеджеров или сделать еще десяток красивых рекламных роликов? Видимо, не проще. А значит, «что-то в этом есть». Вот мы сейчас и попытаемся понять даже не то, что получилось в результате, а то, чем руководствовались разработчики IAG (Intel Architecture Group), когда принимали решение (а такое решение наверняка принималось!) — разрабатывать «эту интересную мысль» дальше, или отложить в сундук для идей забавных, но бесполезных.

Как ни странно, для того чтобы понять как функционирует Hyper-Threading, вполне достаточно понимать как работает… любая многозадачная операционная система. И действительно — ну ведь исполняет же каким-то образом один процессор сразу десятки задач? Этот «секрет» всем уже давно известен — на самом деле одновременно все равно выполняется только одна (на однопроцессорной системе), просто переключение между кусками кода разных задач выполняется настолько быстро, что создается иллюзия одновременной работы большого количества приложений.

По сути, Hyper-Threading предлагает нам то же самое, но реализована аппаратно, внутри самого CPU. Есть некоторое количество различных исполняющих блоков (ALU, MMU, FPU, SIMD), и есть два «одновременно» исполняемых фрагмента кода. Специальный блок отслеживает, какие команды из каждого фрагмента необходимо выполнить в данный момент, после чего проверяет, загружены ли работой все исполняющие блоки процессора. Если один из них простаивает, и именно он может исполнить эту команду — ему она и передается. Естественно, существует и механизм принудительного «посыла» команды на выполнение — в противном случае один процесс мог бы захватить весь процессор (все исполняющие блоки) и исполнение второго участка кода (исполняемого на втором «виртуальном CPU») было бы прервано. Насколько мы поняли, данный механизм (пока?) не является интеллектуальным т. е. не способен оперировать различными приоритетами, а просто чередует команды из двух разных цепочек в порядке живой очереди т. е. просто по принципу «я твою команду исполнил — теперь уступи место другому потоку». Если, конечно, не возникает ситуации, когда команды одной цепочки по исполняющим блокам нигде не конкурируют с командами другой. В этом случае мы получаем действительно на 100% параллельное исполнение двух фрагментов кода.

Теперь давайте подумаем, чем Hyper-Threading потенциально хороша, и чем — нет. Самое очевидное следствие ее применения — повышение коэффициента полезного действия процессора. Действительно — если одна из программ использует в основном целочисленную арифметику, а вторая — выполняет вычисления с плавающей точкой, то во время исполнения первой FPU просто ничего не делает, а во время исполнения второй — наоборот, ничего не делает ALU. Казалось бы, на этом можно закончить. Однако мы рассмотрели лишь идеальный (с точки зрения применения Hyper-Threading) вариант. Давайте теперь рассмотрим другой: обе программы задействуют одни и те же блоки процессора. Понятно, что ускорить выполнение в данном случае довольно сложно — ибо физическое количество исполняющих блоков от «виртуализации» не изменилось. А вот не замедлится ли оно? Давайте разберемся. В случае с процессором без Hyper-Threading мы имеем просто «честное» поочередное выполнение двух программ на одном ядре с арбитром в виде операционной системы (которая сама представляет собой еще одну программу), и общее время их работы определяется:

  1. временем выполнения кода программы №1
  2. временем выполнения кода программы №2
  3. временными издержками на переключение между фрагментами кода программ №1 и №2

Что мы имеем в случае с Hyper-Threading? Схема становится немного другой:

  1. время выполнения программы №1 на процессоре №1 (виртуальном)
  2. время выполнения программы №2 на процессоре №2 (виртуальном)
  3. время на переключение одного физического ядра (как набора требуемых обеим программам исполняющих блоков) между двумя эмулируемыми «виртуальными CPU»

Остается признать, что и тут Intel поступает вполне логично : конкурируют между собой по быстродействию у нас только пункты за номером три, и если в первом случае действие выполняется программно-аппаратно (ОС управляет переключением между потоками, задействуя для этого функции процессора), то во втором случае мы фактически имеем полностью аппаратное решение — процессор все делает сам. Теоретически, аппаратное решение всегда оказывается быстрее. Подчеркнем — теоретически. Практикум у нас еще впереди.

Но и это еще не все. Также одним из серьезнейших… нет, не недостатков, а скорее, неприятных моментов является то, что команды, увы, не исполняются в безвоздушном пространстве, но вместо этого Pentium 4 приходится иметь дело с классическим x86-кодом, в котором активно используется прямое адресование ячеек и даже целых массивов, находящихся за пределами процессора — в ОЗУ. Да и вообще, к слову, большинство обрабатываемых данных чаще всего находится там:). Поэтому «драться» между собой наши виртуальные CPU будут не только за регистры, но и за общую для обоих процессорную шину, минуя которую данные в CPU попасть просто не могут. Однако тут есть один тонкий момент: на сегодняшний день «честные» двухпроцессорные системы на Pentium III и Xeon находятся в точно такой же ситуации ! Ибо наша старая добрая шина AGTL+, доставшаяся в наследство всем сегодняшним процессорам Intel от знаменитого Pentium Pro (в дальнейшем ее лишь подвергали модификациям, но идеологию практически не трогали) — ВСЕГДА ОДНА, сколько бы CPU ни было установлено в системе. Вот такой вот «процессорный коаксиал»:). Отойти от этой схемы на x86 попробовала только AMD со своим Athlon MP — у AMD 760MP/760MPX от каждого процессора к северному мосту чипсета идет отдельная шина. Впрочем, даже в таком «продвинутом» варианте мы все равно убегаем от проблем не очень далеко — ибо уж что-что, а шина памяти у нас точно одна — причем вот в этом случае уже везде (напоминаем, разговор идет про x86-системы).

Однако нет худа без добра, и даже из этого в общем-то не очень приятного момента Hyper-Threading может помочь извлечь какую-то пользу. Дело в том, что по идее мы должны будем наблюдать существенный прирост производительности не только в случае с несколькими задачами, использующими разные функциональные блоки процессора, но и в том случае, если задачи по-разному работают с данными, находящимися в ОЗУ. Возвращаясь к старому примеру в новом качестве — если одно приложение у нас что-то усиленно считает «внутри себя», другое же — постоянно подкачивает данные из ОЗУ, то общее время выполнения их в случае использования Hyper-Threading по идее должно уменьшиться даже если они используют одинаковые блоки исполнения инструкций — хотя бы потому, что команды на чтение данных из памяти смогут обрабатываться в то время, пока наше первое приложение будет что-то усиленно считать.

Итак, подведем итог: технология Hyper-Threading с теоретической точки зрения выглядит весьма неплохо и, мы бы сказали, «адекватно», т. е. соответствует реалиям сегодняшнего дня. Уже довольно редко можно застать пользователя с одним сиротливо открытым окном на экране — всем хочется одновременно и музыку слушать, и по Internet бродить, и диски с любимыми MP3 записывать, а может даже, и поиграть на этом фоне в какую-нибудь стрелялку или стратегию, которые, как известно, процессор «любят» ну просто со страшной силой:). С другой стороны, общеизвестно, что конкретная реализация способна иногда своей «кривизной» убить любую самую превосходную идею, и с этим мы тоже не раз встречались на практике. Поэтому закончив с теорией, перейдем к практике — тестам. Они-то и должны нам помочь ответить на второй главный вопрос: так ли хороша Hyper-Threading сейчас — и уже не в качестве идеи, а в качестве конкретной реализации этой идеи «в кремнии». Тестирование

Тестовый стенд:

  • Процессор: Intel Pentium 4 3,06 ГГц с поддержкой технологии Hyper-Threading, Socket 478
  • Материнская плата: Gigabyte 8PE667 Ultra (версия BIOS F3) на чипсете i845PE
  • Память: 512 МБ PC2700(DDR333) DDR SDRAM DIMM Samsung, CL 2
  • Видеокарта: Palit Daytona GeForce4 Ti 4600
  • Жесткий диск: IBM IC35L040AVER07-0, 7200 об/мин

Программное обеспечение:

  • OC и драйверы:
    • Windows XP Professional SP1
    • DirectX 8.1b
    • Intel Chipset Software Installation Utility 4.04.1007
    • Intel Application Accelerator 2.2.2
    • Audiodrivers 3.32
    • NVIDIA Detonator XP 40.72 (VSync=Off)
  • Тестовые приложения:
    • (с поддержкой мультипроцессорности и технологии Hyper-Threading)
    • RazorLame 1.1.5.1342 + Lame codec 3.92
    • VirtualDub 1.4.10 + DivX codec 5.02 Pro
    • WinAce 2.2
    • Discreet 3ds max 4.26
    • BAPCo & MadOnion SYSmark 2002
    • MadOnion 3DMark 2001 SE build 330
    • Gray Matter Studios & Nerve Software Return to Castle Wolfenstein v1.1
    • Croteam/GodGames Serious Sam: The Second Encounter v1.07

Вопреки обычаю, мы не будем сегодня тестировать производительность нового Pentium 4 3,06 ГГц в сопоставлении с предыдущими моделями или же с процессорами-конкурентами. Ибо это по большому счету бессмысленно. Тесты, составляющие нашу методику, не менялись уже довольно продолжительный период времени, и желающие провести необходимые сопоставления могут воспользоваться данными из предыдущих материалов , мы же сосредоточимся на основном моменте, не распыляясь на детали. А основным в этом материале, как, наверное, нетрудно догадаться, является исследование технологии Hyper-Threading и ее влияния на производительность… на производительность чего ? Не столь уж и праздный вопрос, как оказывается. Впрочем, не будем забегать вперед. Начнем с традиционных тестов, через которые мы плавно подойдем (в контексте данного материала) к основным.

Кодирование WAV в MP3 (Lame)
Кодирование VideoCD в MPEG4 (DivX)
Архивация с помощью WinAce с 4-мегабайтным словарем

Хоть сколько-нибудь явного преимущества Hyper-Threading не продемонстрировала, но надо сказать, что мы и шансов-то особых данной технологии не дали — почти все приложения «однопроцессорные», одновременно исполняемых потоков не порождают (проверено!), и, стало быть, в этих случаях мы имеем дело с обычным Pentium 4, которому чуть-чуть подняли частоту. Говорить о каких-то тенденциях на фоне таких мизерных расхождений вряд ли уместно… хотя если все же высасывать их из пальца, то они даже немного в пользу Hyper-Threading.

3ds max 4.26

Классический тест, но в то же самое время — первое из приложений в этом обзоре, которое в явном виде поддерживает многопроцессорность. Конечно, колоссальным преимущество системы с включенной поддержкой Hyper-Threading не назовешь (оно составляет порядка 3%), однако не будем забывать, что в данном случае Hyper-Threading работала далеко не в самой лучшей для себя ситуации: 3ds max реализует поддержку SMP за счет порождения потоков , причем все они используются для одной и той же цели (рендеринг сцены) и, стало быть, содержат примерно одинаковые команды, а потому и работают тоже одинаково (по одной схеме). Мы уже писали, что Hyper-Threading лучше подходит для того случая, когда параллельно исполняются разные программы, задействующие разные блоки CPU. Тем более приятно, что даже в такой ситуации технология смогла «на ровном месте» обеспечить пусть и небольшой, но прирост быстродействия. Ходят слухи, что 3ds max 5.0 дает больший выигрыш при задействовании Hyper-Threading, и учитывая рвение, с которым Intel «проталкивает» свои технологии в области ведения производителей ПО, это как минимум следует проверить. Несомненно, так мы и сделаем, но уже в более поздних материалах на эту тему.

3DMark 2001SE

Результаты в общем-то вполне закономерные, и вряд ли могут вызвать у кого-то удивление. Быть может, лучше все-таки использовать бенчмарки для 3D именно для того, для чего они предназначены — тестирования скорости видеокарт, а не процессоров? Наверное, так оно и есть. Впрочем, результаты, как известно, лишними не бывают. Несколько настораживает чуть меньший балл у системы с задействованной Hyper-Threading. Впрочем, учитывая что разница составляет около 1%, мы бы не делали из этого далеко идущих выводов.

Return to Castle Wolfenstein,
Serious Sam: The Second Encounter

Примерно аналогичная ситуация. Впрочем, мы еще не подобрались даже близко к тестам, способным хоть как-то продемонстрировать плюсы (или минусы) Hyper-Threading. Иногда (на неощутимо малую величину) задействование «псевдо-многопроцессорности» дает отрицательный результат. Однако это не те сенсации, которых мы ждем, не так ли? :) Не слишком помогает даже тестирование со звуком, который, по идее, должен обсчитываться отдельным потоком и потому давать шанс проявить себя второму логическому процессору.

SYSmark 2002 (Office Productivity и Internet Content Creation)

А вот теперь так и хочется во весь голос крикнуть: «Ну, кто сомневался в том, что Hyper-Threading реально способна повысить быстродействие на реальных задачах?!». Результат: +16—20% — действительно ошеломляет. Причем что самое интересное — ведь SYSmark пытается эмулировать именно ту схему работы, которую Intel считает самой «удачной» для технологии Hyper-Threading — запуск различных приложений и одновременная работа с ними. Причем в процессе исполнения своего скрипта, SYSmark 2002 поступает вполне грамотно с точки зрения имитации работы пользователя, «отправляя в background» некоторые приложения, которые уже получили свое «долгосрочное задание». Так, например, кодирование видео происходит на фоне исполнения прочих приложений из скрипта Internet Content Creation, а в офисном подтесте действует вездесущее антивирусное ПО и декодирование речи в текст с помощью Dragon Naturally Speaking. По сути — первый тест, в котором созданы более или менее «вольготные» условия для технологии Hyper-Threading, и она тут же показала себя с наилучшей стороны! Впрочем, мы решили не полагаться во всем на тесты, написанные не нами, и провели «для закрепления эффекта» несколько показательных собственных экспериментов. Экспериментируем с Hyper-Threading

Одновременное выполнение рендеринга в 3ds max и архивирования в WinAce

Вначале на фоне заведомо более длительного процесса архивирования была отрендерена стандартная тестовая сцена в 3ds max. Затем на фоне рендеринга специально растянутой сцены было выполнено стандартное тестовое архивирование файла в WinAce. Результат сравнивался со временем окончания последовательного выполнения тех же самых стандартных тестов. К полученным цифрам применялись два корректирующих коэффициента: для выравнивания времени исполнения заданий (мы полагаем, что эффект ускорения от параллельного выполнения двух приложений может быть корректно подсчитан только при условии одинаковой продолжительности выполняемых заданий) и для «снятия» эффекта от неравномерности выделяемых процессорных ресурсов для foreground-/background-приложений. В итоге мы «насчитали» положительный эффект ускорения на 17% от использования технологии Hyper-Threading.

Итак, впечатляющие результаты SYSmark получили подтверждение в тесте с соседством двух реальных программ. Конечно же, ускорение не двукратное, да и тесты в пару мы выбирали сами, исходя из наиболее благоприятной, по нашему мнению, ситуации для задействования Hyper-Threading. Но давайте задумаемся над этими результатами вот в каком разрезе: процессор, производительность которого мы сейчас исследуем — в общем-то, за исключением поддержки Hyper-Threading — просто давно привычный Pentium 4. Фактически, столбик «без Hyper-Threading» — это то, что мы могли бы видеть если бы эту технологию не стали переводить в десктопы . Несколько другое чувство сразу же возникает, правда? Давайте все-таки не будем жаловаться (по отечественной традиции) на то, что «все не так хорошо, как могло бы быть», а просто подумаем о том, что нам вместе с новым процессором дали еще один способ ускорить выполнение некоторых операций.

Фоновое архивирование в WinAce + проигрывание фильма
Рендеринг в 3ds max + фоновое проигрывание музыки

Методика выполнения теста совершенно тривиальна: в пару к просмотру фильма, сжатого предварительно в формат MPEG4 при помощи кодека DivX, фоном запускалось архивирование в WinAce (разумеется, в случае пропуска кадров и подтормаживания при просмотре, данный тест не имел бы практического смысла, но нареканий на качество просмотра не было). Аналогично, во время рендеринга обычной тестовой сцены в 3ds max фоном проигрывалась (через WinAmp) музыка из файла формата MP3 (и отслеживались не замеченные ни разу в итоге «заикания» звука). Обратите внимание на естественное распределение ролей «главное-фоновое» в каждой паре приложений. В качестве результата, как обычно, бралось время архивации и полного рендеринга сцены соответственно. Эффект от Hyper-Threading в цифрах: +13% и +8%.

Достаточно реальная ситуация, именно такие мы и старались воспроизвести. Вообще (и об этом будет сказано далее) Hyper-Threading не настолько очевидна, как кажется. Простой подход «в лоб» («у нас в ОС видны два процессора — давайте относиться к ним как к двум процессорам») не дает ощутимого эффекта, и возникает даже некоторое чувство обманутости. Однако, возвращаясь к вышесказанному, попробуем оценивать результаты с несколько других позиций: задачи, которые в обычной ситуации исполняются за одно время, в случае задействования Hyper-Threading, выполняются за меньшее время . Кто попробует возразить, что «нечто» хуже, чем «ничто»? В этом-то вся и суть — отнюдь не панацею нам предлагают, а «всего лишь» средство ускорить уже имеющееся процессорное ядро, кардинальных изменений не претерпевшее. Получается? Да. Ну и какие, по большому счету, могут быть еще вопросы? Конечно, до обещанных в пресс-релизе 30% в большинстве случаев оказывается далеко, однако не стоит делать вид, что в жизни случается, сопоставив пресс-релиз компании X с пресс-релизом компании Y, убедиться, что в первом обещаний меньше и они более «сбыточные». :)

Тестирование в CPU RightMark 2002B

Новая версия CPU RM поддерживает многопоточность (соответственно, и Hyper-Threading), и, естественно, мы не могли не воспользоваться возможностью протестировать новый процессор с помощью этого бенчмарка. Оговоримся, что пока это только первый «выход» CPU RM в тестах многопроцессорных систем, поэтому можно сказать что исследование было «обоюдосторонним» — мы тестировали Hyper-Threading как частный случай SMP на системе с Pentium 4 3,06 ГГц, а эта система, в свою очередь, тестировала наш бенчмарк:) на предмет валидности результатов, и, соответственно, правильной реализации в нем поддержки мультипоточности. Без преувеличения скажем, что результатами остались довольны обе стороны:). Несмотря на то, что пока CPU RM все еще «не полностью многопроцессорный» (несколько потоков создаются только в блоке рендеринга, Math Solving блок остается однопоточным), полученные нами результаты явственно свидетельсвуют о том, что поддержка SMP и Hyper-Threading присутствует, и польза от их наличия видна невооруженным глазом. Кстати, реализация многопоточности в блоке «решателя» в общем-то задача намного менее тривиальная, чем в блоке рендеринга, поэтому если у кого-то из читателей будут некие идеи по этому поводу — мы ждем ваших комментариев, идей, и предложений. Напоминаем, что проект CPU RightMark — это бенчмарк с открытыми исходными текстами, так что интересующиеся программированием могут не только воспользоваться им, но и вносить предложения по поводу усовершенствования кода.

Перед тем как перейти к диаграммам, остановимся поподробнее на методике. По подписям столбцов, легко заметить, что тестировалась производительность системы в целых двенадцати (!) вариантах. Однако ничего страшного в этом нет, и разобраться достаточно просто. Итак, изменяемыми были следующие факторы:

  1. Тесты проводились со включенной Hyper-Threading и с отключенной.
  2. Использовались установки CPU RM для количества создаваемых потоков: один, два, и четыре.
  3. Использовались установки CPU RM для используемого типа инструкций в расчетном модуле: SSE2 и «классические» x87 FPU.

Объясним последнее. Казалось бы, отказываться от использования SSE2 на Pentium 4 — полный, извините, бред (о чем мы уже неоднократно писали раньше). Однако в данном случае чисто теоретически это было неплохим шансом проверить функционирование и результативность технологии Hyper-Threading. Дело в том, что инструкции FPU использовались только в расчетном модуле , в модуле же рендеринга по-прежнему оставалась включенной поддержка SSE. Таким образом, те, кто внимательно читал теоретическую часть, наверняка уже поняли «где собака зарыта» — мы принудительно заставили разные части бенчмарка использовать разные вычислительные блоки CPU ! По идее, в случае принудительного отказа от SSE2, Math Solving блок CPU RM должен был оставлять «нетронутым» блоки исполнения SSE/SSE2 инструкций, что давало возможность на полную катушку воспользоваться ими блоку рендеринга того же CPU RM. Вот теперь самое время перейти к результатам, и посмотреть насколько правильными оказались наши предположения. Также заметим, что с целью увеличения валидности и стабильности результатов, была изменена еще одна установка: количество фреймов (по умолчанию — 300) было увеличено до 2000.

Тут, собственно, комментировать практически нечего. Как мы уже говорили выше, блок «решателя» (Math Solving) остался нетронутым, поэтому на его производительность Hyper-Threading не оказывает никакого влияния. Однако в то же время отрадно… что не вредит! Ведь мы уже знаем, что теоретически возникновение ситуаций когда «виртуальная многопроцессорность» может мешать работе программ — возможно. Однако один факт советуем крепко запомнить: посмотрите, как сильно влияет на производительность блока «решателя» отказ от использования SSE2! Мы еще вернемся к этой теме чуть позже, и в весьма неожиданном ключе…

И вот — долгожданный триумф. Легко заметить, что как только количество потоков в блоке рендеринга становится больше одного (в последнем случае использовать возможности Hyper-Threading, мягко говоря, трудновато:) — сразу же это обеспечивает данной конфигурации одно из первых мест. Также заметно, что именно два потока являются оптимальными для систем с Hyper-Threading. Правда, быть может, кто-то вспомнит скриншот Task Manager, которым мы «стращали» вас выше, поэтому сделаем оговорку — два активно работающих потока. В общем-то, это очевидно и вполне логично — раз у нас два виртуальных CPU, то наиболее правильно создать ситуацию, когда и потоков тоже будет два. Четыре — уже «перебор», потому что за каждый из виртуальных CPU начинают «драться» по несколько потоков. Однако даже в этом случае системе со включенной Hyper-Threading удалось обогнать «однопроцессорного» конкурента.

Об удачах всегда принято говорить подробно и со вкусом, и естественно, еще подробнее и вкуснее о них говорить когда они — твои собственные. Констатируем, что «эксперимент с переходом на инструкции FPU» также безусловно удался. Казалось бы, отказ от SSE2 должен был сильнейшим образом ударить по производительности (быстренько вспоминаем разгромные результаты Math Solving Speed с применением инструкций FPU на первой диаграмме этого раздела). Однако что мы видим! — во второй строчке, на самом верху, среди чемпионов — именно такая конфигурация! Причины опять-таки понятны, и это очень радует, потому что их понятность позволяет сделать вывод о предсказуемости поведения систем с поддержкой технологии Hyper-Threading. «Минусовый» результат блока Math Solving на системе с включенной Hyper-Threading «компенсировал» своим вкладом в общую производительность блок рендеринга, которому полностью отдали на откуп исполняющие блоки SSE/SSE2. Причем компенсировал настолько хорошо, что по результатам такая система оказалась в первых рядах. Остается пожалуй только еще раз повторить то, о чем неоднократно шла речь выше: в полную силу возможности Hyper-Threading проявляются в тех ситуациях, когда активно работающие программы (или потоки) используют разные исполняющие блоки CPU. В данной ситуации эта особенность проявилась особенно сильно, поскольку мы имели дело с хорошо, тщательно оптимизированным кодом CPU RM. Однако главный вывод состоит в том, что в принципе Hyper-Threading работает — значит, будет работать и в других программах. Естественно, тем лучше, чем больше их разработчики будут уделять времени оптимизации кода.

Выводы

…В очередной раз, к радости всего прогрессивного человечества, Intel выпустила новый Pentium 4, производительность которого еще выше чем у предыдущего Pentium 4, но это еще не предел, и скоро мы увидим еще более быстрый Pentium 4… М-да… Не то что бы это неправда — действительно, так и есть. Однако мы уже договорились, что не будем рассматривать в данной статье производительность вышеуказанного Pentium 4 3,06 ГГц в связке с другими процессорами по той самой причине, что… см. выше по тексту. Нас, видите ли, интересует Hyper-Threading. Вот такие мы привередливые — не важны нам предсказуемые результаты повышения еще на 200 МГц частоты работы давно знакомого и предсказуемого процессорного ядра, подавай нам «свежатинку», ранее не рассматриваемую. И как уже наверное догадались прозорливые читатели, выводы наши будут посвящены опять-таки этой самой навязшей в зубах технологии и всему что с ней связано. Почему? Наверное, потому, что все остальное вы отлично знаете сами..

И раз уж речь идет о Hyper-Threading, давайте для начала определим для себя главное: как к ней относиться? Что она из себя представляет? Не претендуя на истину в последней инстанции, сформулируем общее мнение, которое возникло у нас на основании результатов тестов: Hyper-Threading — это не SMP . «Ага!!!» — закричат поклонники альтернативы. «Мы так и знали!!!» — завопят они что есть мочи. «Hyper-Threading — это нечестный SMP!!!» — крики сии еще долго будут разноситься по бескрайним просторам Рунета… Мы же, как умудренные саксаулами аксакалы (или наоборот? :), возразим: «Ребята, а кто, собственно, обещал?». Кто произнес эту крамольную аббревиатуру? SMP, напомним — это Symmetric Multi-Processing, сиречь многопроцессорная архитектура. А у нас, пардон, процессор всего один . Да, он снабжен некой, простонародно выражаясь, «фичей», которая позволяет делать вид, что вроде бы оных процессоров два. Однако делает ли кто-то секрет из того, что на самом деле это не так? Вроде бы этого мы не заметили… Стало быть, мы имеем дело именно с «фичей», и не более того. И относиться к ней стоит именно таким образом, и никак иначе. Поэтому давайте не будем ниспровергать никем не возводимых идолов, и спокойно подумаем, имеет ли данная фича какой-то смысл.

Результаты тестов свидетельствуют, что в некоторых случаях — имеет. Фактически, то, о чем мы чисто теоретически рассуждали в первой части статьи, нашло свое практическое подтверждение — технология Hyper-Threading позволяет увеличить коэффициент полезного действия процессора в определенных ситуациях. В частности — в ситуациях, когда одновременно исполняются разнородные по характеру приложения. Зададим сами себе вопрос: «Это — плюс?». Наш ответ: «Да, это — плюс». Является ли он всеобъемлющим и глобальным? Похоже, что нет — ибо эффект от Hyper-Threading наблюдается исключительно в некоторых случаях. Однако так ли это важно если мы рассматриваем технологию в целом? Понятно, что появление CPU, способного в два раза быстрее делать все то, что делалось ранее — это громадный прорыв. Однако как говорили еще древние китайцы «упаси нас Господи жить в эпоху перемен». Intel не стал инициировать начало такой эпохи, просто добавив своему процессору возможность кое-что делать быстрее. Классический западный принцип, не очень хорошо воспринимаемый в нашем «шаролюбивом» обществе: «Вы можете получить нечто получше, если заплатите несколько больше».

Возвращаясь к практике: Hyper-Threading нельзя назвать «бумажной» технологией, ибо при определенных комбинациях она дает вполне ощутимый эффект. Добавим — даже намного больший эффект, чем иногда наблюдается при сравнении, к примеру, двух платформ с одним процессором на разных чипсетах. Однако следует четко понимать, что эффект этот наблюдается не всегда, и существенно зависит от… наверное, самым приемлемым термином будет «стиль». От стиля работы пользователя с компьютером. Причем именно здесь проявляется то, о чем мы сказали в самом начале: Hyper-Threading — это не SMP . «Классический SMP-стиль», где пользователь рассчитывает на реакцию столь же классической «честной» многопроцессорной системы, здесь не даст желаемого результата.

«Стиль Hyper-Threading» — это сочетание процессов, не побоимся этого слова, «развлекательных» или «служебных» с процессами «рабочими». Вы не получите существенного ускорения от CPU с поддержкой этой технологии в большинстве классических многопроцессорных задач, или если по привычке запускаете только одно приложение в один момент времени. Но вы скорее всего получите уменьшение времени исполнения многих фоновых задач , исполняемых в качестве «довеска» к обычной работе. Фактически, Intel просто еще раз напомнила всем нам, что операционные системы, в которых мы работаем — многозадачные . И предложила способ ускорения — но не столько одного какого-то процесса самого по себе, сколько комплекса выполняемых одновременно приложений . Это интересный подход, и, как нам кажется, достаточно востребованный. Теперь он обрел свое имя. Не мудрствуя лукаво, хочется сказать: просто хорошо, что эта оригинальная идея пришла кому-то в голову. Тем более неплохо, что он смог ее воплотить в конкретный продукт. В остальном, как и всегда — время покажет.

В прошлом году Intel выпустила новое ядро - Prescott - для Pentium 4 , особенностью которого стал 90 -нм техпроцесс, кэш 2-го уровня возрос до 1 Мбайт, кроме того, появился набор инструкций SSE3 . Одновременно на суд общественности был представлен Pentium 4 Extreme Edition 3,4 ГГц с 2 Мбайт кэша 3-го уровня. Летом была объявлена платформа Socket 775 , которая заинтересовала нас тем, что ножки с процессора “перешли” на сокет. Вместе с новым разъемом мы получили и чипсеты i915 и i925 , набор функций которых приятно порадовал всех: DDR2 SDRAM , PCI Express для графики и периферии, звук HDA , WLAN , Matrix RAID и т.д. Примерно в то же время Intel ввела модельные номера, до этого этим баловалась только AMD . И нам пришлось привыкать к линейке Celeron 3xx , Pentium 4 5xx .

Однако у нового ядра Prescott были проблемы с высоким тепловыделением, которое достигало 115 Вт для топовых моделей. При этом производительность по сравнению с ядром Northwood практически не увеличилась. Конкуренты меж тем не спали, AMD представила ядро Winchester , которое отличалось низким тепловыделением. Кроме того, компания подкупала пользователей технологиями Cool"n"Quiet (снижение частоты и напряжения при малых нагрузках), NX-bit (запрет выполнения кода на переполнение буфера) и x86-64 (64-битные расширения).

В итоге Prescott дорабатывали много раз и на свет появилось очень много степпингов процессора. Спустя некоторое время инженеры Intel представили хорошо сбалансированные процессоры со степпингом E0 . Появившаяся технология Thermal Monitoring 2 улучшила защиту от перегрева - процессор стал снижать частоту и напряжение, если тепловыделение достигнет критического предела. Подобный подход лучше троттлинга (Throttling), когда процессор в той же ситуации пропускал тактовые импульсы. Впрочем, он по-прежнему включается, но в экстремальных случаях. Технология Thermal Monitoring 2 может работать и в режиме бездействия для снижения тепловыделения, но для этого нужно установить Service Pack 2 . В новом степпинге появился XD-bit , выполняющий функцию запрета выполнения вредоносного кода, для этого SP2 также необходим. Процессоры с поддержкой этой фишки получили суффикс J . Появление 64 -битных расширений EM64T в степпинге E0 для 500-й линейки мы так и не увидели.

Однако вспомним про AMD, которая к тому времени представила процессоры Athlon 64 4000+ и FX-55 . Последний оказался лучшим процессором для геймеров, показывая экстремальную производительность в играх. На этот выпад Intel ответила выпуском чипсета i925XE и Pentium 4 Extreme Edition 3,46 ГГц с системной шиной 1066 МГц. Другие характеристики нового P4 EE не изменились: кэш L2 512 Кбайт, L3 - 2 Мбайт (ядро Gallatin ). Увы, при экстремальной цене $999 новичок проигрывал FX-55 в большинстве игровых тестов.

Вот, вкратце, ситуация на начало 2005 года.

Speedstep в действии

Технология SpeedStep позволяет Windows программно использовать интерфейс ACPI для уменьшения тактовой частоты процессора до 2,8 ГГц при низкой нагрузке. Для работы SpeedStep необходимы следующие условия:

  • процессор должен поддерживать SpeedStep;
  • материнская плата и BIOS должны поддерживать SpeedStep;
  • должна быть установлена система Windows XP Service Pack 2;
  • необходимо выбрать мобильную схему энергопотребления под Windows.

Наша материнская плата ASUS P5AD2-E Platinum (i925XE) обеспечивает полную поддержку SpeedStep.

Итог по SpeedStep будет таков: для игр его лучше вообще отключать, а для офисной и другой работы - включать. Тогда процессор будет работать на меньших частотах и выделять меньше тепла.

Новая страница в жизни Pentium 4: шестисотые модели

Самое главное отличие новых Pentium 6xx - увеличение кэша L2 до 2 Мбайт. Вся новая серия процессоров поддерживает XD-bit. Технология управления энергопотреблением еще улучшилась: если степпинг E0 мог похвастаться Thermal Monitoring 2, то у новых процессоров добавилась технология Enhanced SpeedStep , которая ранее использовалась только в мобильных процессорах компании. Она позволяет снижать напряжение и частоту, если нагрузка на процессор невелика. Главное отличие между двумя технологиями заключается в том, что “инициатором” снижения частоты в последнем случае выступает операционная система, а не процессор.

Все Pentium 6xx поддерживают 64-битные расширения EM64T (аналог расширений x86-64 от AMD). Впрочем, эта особенность может быть полезна только при использовании Windows XP 64-bit Edition . Но даже после официального появления этой ОС проблемы для пользователей AMD и Intel не закончатся: дело в том, что прирост производительности вы получите, только если ОС, драйвера и программы будут 64-битными. А вот с этим большие проблемы и даже сложно сказать, когда мы сможем воспользоваться плодами новой технологии. С другой стороны, если Intel взялась за это дело, то процесс пойдет гораздо быстрее.

Стоит еще сказать, что технология EM64T будет встречаться и в некоторых моделях серии 5xx (с “единичками” в конце номера), а вот Enhanced Speed Step останется эксклюзивной чертой линейки 6xx.

Физически кристалл линейки Pentium 4 6xx существенно больше, чем у 5xx: 169 миллионов транзисторов и 135 мм 2 против 125 миллионов и 112 мм 2 .

Достаточно интересна новая модель P4 Extreme Edition. К сожалению, Pentium 4 Extreme Edition 3,46 ГГц, вышедший в ноябре 2004-го, так и не оправдал надежд, поэтому был списан в утиль. На смену ему пришел новый P4 Extreme Edition 3,73 ГГц, который представляет из себя обычный процессор линейки 6xx, но с частотой системной шины 1066 МГц. Кэш 2-го уровня составляет все те же 2 Мбайт, а вот с кэшем 3-го уровня пришлось распрощаться.

Стоит отметить, что линейка 6хх будет дороже 500-х моделей при равных тактовых частотах.

Тестовый стенд
Процессоры Intel Pentium 4 560 (3,6 ГГц, 1 Мбайт кэша L2)
Intel Pentium 4 660 (3,6 ГГц, 2 Мбайт кэша L2)
Intel Pentium 4 Extreme Edition 3,73 ГГц (2 Мбайт кэша L2)
Материнская плата ASUS P5AD2-E Platinum (i925XE)
Память 2x512 Мбайт DDR2 SDRAM Corsair TwinX CM2X512A-5400C4 533 МГц
Общее аппаратное обеспечение
Видеокарта NVIDIA GeForce 6800 GT 256 Мбайт (PCIE x16)
Жесткий диск Western Digital WD740 Raptor (74 Гбайт, 8 Мбайт, 10 000 об/мин, SATA)
Оптический привод MSI MS-8216
Программное обеспечение
Драйвер для видеокарты NVIDIA Detonator 66.93
Драйвера для чипсета Intel Chipset Installation Utility 6.3.0.1007
DirectX 9.0c
ОС Windows XP Professional SP2
Стоимость процессоров в партиях от 1000 шт.
Процессор Тактовая частота Цена (доллары США)
Pentium 4 EE 3,73 ГГц 999
Pentium 4 EE 3,43 ГГц 999
Pentium 4 660 3,6 ГГц 605
Pentium 4 650 3,4 ГГц 401
Pentium 4 640 3,2 ГГц 273
Pentium 4 630 3,0 ГГц 224
Pentium 4 570 3,8 ГГц 637
Pentium 4 560 3,6 ГГц 417
Pentium 4 550 3,4 ГГц 278
Pentium 4 540 3,2 ГГц 218
Pentium 4 530 3,0 ГГц 178
PC Mark04 1.30
CPU Memory
AMD Athlon 64 4000+ 4535 5684
Intel Pentium 4 EE 3,73 ГГц 5743 6294
5525 5705
5495 5494

Гонка частот окончена

На протяжении многих лет мы привыкли к тому, что производители процессоров регулярно радовали нас увеличением тактовых частот - этот показатель стоял во главе угла. К концу 2004 года Intel планировала выпустить Pentium 4 с частотой 4 ГГц, но он так и не появился. Инженеры и руководство компании осознали, что не в гигагерцах счастье да и просто невозможно гнать частоту постоянно, тем более что ее увеличение не ведет к пропорциональному росту производительности системы.

У AMD ситуация похожа: вряд ли в этом году мы увидим процессор, который перешагнет порог в 3 ГГц. Да и зачем это нужно, если современные Athlon 64 со скоростями до 2,6 ГГц успешно конкурируют с продукцией Intel.

Обе компании сегодня работают над повышением эффективности и производительности своих процессоров за счет использования новых технологий, расширения их функций. Гонка за тактовыми частотами окончена. Собственно, 6хх-серия стала прекрасным тому примером.

Технические характеристики процессоров
Номер процессора Частота, ГГц FSB, МГц Кэш L2, Мбайт Технологии Intel
HT SS EM64T XD
Линейка Extreme Edition
Pentium 4 EE 3,73 ГГц 1066 2 + + + +
Pentium 4 EE 3,43 ГГц 1066 512 Кбайт + 2 Мбайт кэш L3 + - - -
Линейка 6xx
670 3,8 800 2 + + + +
660 3,6 800 2 + + + +
650 3,4 800 2 + + + +
640 3,2 800 2 + + + +
630 3 800 2 + + + +
Линейка 5xx
571 3,8 800 1 + - + +
570 J 3,8 800 1 + - - +
561 3,6 800 1 + - + +
560 J 3,6 800 1 + - - +
560 3,6 800 1 + - - -
551 3,4 800 1 + - + +
550 J 3,4 800 1 + - - +
550 3,4 800 1 + - - -
541 3,2 800 1 + - + +
540 J 3,2 800 1 + - - +
540 3,2 800 1 + - - -
531 3 800 1 + - + +
530 J 3 800 1 + - - +
530 3 800 1 + - - -
520 J 2,8 800 1 + - - +
520 2,8 800 1 + - - -
Far Cry (Cooler01)
Разрешение 1280x1024
AMD Athlon 64 4000+ 197,8
Intel Pentium 4 EE 3,73 ГГц 176,0
Intel Pentium 4 660 (3,8 ГГц) 167,7
Intel Pentium 4 560 (3,8 ГГц) 164,0
Doom 3 (demo1)
Разрешение 1024x768
AMD Athlon 64 4000+ 94,7
Intel Pentium 4 EE 3,73 ГГц 94,2
Intel Pentium 4 660 (3,8 ГГц) 90,0
Intel Pentium 4 560 (3,8 ГГц) 87,1
Wolfenstein - Enemy Territory
Разрешение 1024x768
AMD Athlon 64 4000+ 182,2
Intel Pentium 4 EE 3,73 ГГц 178,3
Intel Pentium 4 660 (3,8 ГГц) 168,7
Intel Pentium 4 560 (3,8 ГГц) 166,1

Заключение

Если сравнивать линейки 5хх и 6хх, то заключение будет вполне определенным: новые версии процессоров лучше, хотя удвоенный размер кэша не особо влияет на производительность. Зато благодаря функциям EM64T, XD-bit, Thermal Monitoring 2, Enhanced SpeedStep новые Pentium 4 выглядят очень перспективно. Большая производительность, внушительный набор дополнительных функций и разумное энергопотребление существенно меняют картину. Тем более что новинки полностью совместимы с уже привычными материнскими платами под Socket 775, единственное, что вам может потребоваться сделать, так это обновить BIOS.

До этого момента Intel можно было обвинить в некоторой медлительности внедрения новых технологий: AMD гораздо раньше реализовала 64-битные расширения, хотя реальное преимущество от нее до сих пор не очевидно. NX-bit и Cool"n"Quiet владельцы AMD также увидели довольно давно.

Впрочем, остается непонятным, почему Intel объявила столь высокую цену на новые процессоры: они существенно дороже старых версий.

Так или иначе, но в ближайшие месяцы от Intel стоит ждать куда более кардинальных обновлений линейки Pentium 4 - двухъядерные процессоры, технология виртуализации Vanderpool (VT) и многое другое.

Как известно, революции в компьютерном
мире случаются все реже. Да и так ли они необходимы там, где, в общем-то, "все
хорошо", где возможности систем и продуктов с лихвой покрывают нужды большинства
современных пользователей. Это в полной мере относится и к процессорам корпорации
Intel, лидера индустрии. У компании есть полная линейка высокопроизводительных
CPU всех уровней (серверные, десктопные, мобильные), тактовые частоты давно уже
перевалили за "заоблачные" 3 GHz, продажи идут просто "на ура".
И наверное, если бы не оживившиеся конкуренты (точнее, конкурент ), то все
было бы совсем хорошо.

Но "гонка гигагерцев" не прекращается. Оставим в стороне рассмотрение вопросов вроде "Кому это нужно? " и "Насколько это востребовано? " — примем лишь как факт: чтобы удержаться на плаву, производители CPU просто вынуждены тратить силы на выпуск все более быстродействующих (или как минимум более высокочастотных ) продуктов.

Начало февраля Intel отметила представлением целой обоймы новых процессоров. Компания
выпустила сразу семь новых CPU, в числе которых:

  • Pentium 4 3,40 GHz ("старое" ядро Northwood);
  • Pentium 4 Extreme Edition 3,40 GHz;
  • целых четыре представителя новой линейки с ядром Prescott (кстати, ударение
    на первом слоге) — 3,40E, 3,20E, 3,0E и 2,80E GHz, изготовленные по 90-нанометровой
    технологии и оснащенные кэшем второго уровня объемом 1 MB.

Все эти CPU рассчитаны на шину 800 MHz и поддерживают технологию Hyper-Threading. Кроме того, Intel выпустила Pentium 4 на ядре Prescott с частотой 2,8A GHz, также изготовленный по 90-нанометровому процессу, но рассчитанный на частоту FSB 533 MHz и не поддерживающий Hyper-Threading . По информации Intel, предназначен этот процессор специально для OEM-производителей ПК в ответ на их пожелания. От себя добавим — и на радость оверклокерам, которые наверняка оценят его возможности разгона.

С выпуском новых CPU семейство Pentium 4 значительно пополнилось и сейчас выглядит так, как показано в табл. 1. Естественно, пока Intel вовсе не собирается сворачивать производство Pentium 4 на ядре Northwood с FSB 533 и 800 MHz. Кроме того, в линейке остаются и несколько моделей, рассчитанных на шину 400 MHz (пять процессоров от 2A до 2,60 GHz).

Разрабатывая 90-нанометровые технологии, которые должны обеспечить нормальное
функционирование процессоров класса Prescott, инженеры Intel вынуждены
были преодолевать серьезные препятствия. Природа этих преград состояла
не в недостаточном разрешении производственного оборудования, а в проблемах
физического характера, связанных с невозможностью изготовления столь малых
транзисторов по традиционным технологиям.

Первой проявилась утечка заряда с затвора транзистора через истончившийся
слой диэлектрика между затвором и каналом. При разрешении 90 нм он "выродился"
в барьер из четырех атомов SiO2 толщиной 1,2 нм. Появилась необходимость
в новых изолирующих материалах с более высоким значением константы диэлектрической
проницаемости (high-K dielectric). За счет большей проницаемости они позволяют
наращивать толстый (до 3 нм) изолирующий слой, не создавая при этом препятствий
для электрического поля затвора. Таковыми стали оксиды гафния и циркония.
К сожалению, они оказались несовместимы с применяемыми ныне поликристаллическими
затворами, да и фононные колебания, возникающие в диэлектрике, вызывают
снижение подвижности электронов в канале.

На границе с затвором наблюдается иное явление, выражающееся в значительном
повышении порогового уровня напряжения, необходимого для изменения состояния
проводимости канала транзистора. Решение было найдено в виде металлического
затвора. В прошлом году специалисты корпорации подобрали, наконец, два
подходящих металла, которые позволили сконструировать новые миниатюрные
NМOS- и PMOS-транзисторы. Какие именно металлы они использовали — до
сих пор держится в секрете.

Чтобы увеличить быстродействие транзисторов (оно определяется скоростью
перехода в открытое/закрытое состояние), Intel прибегла к формированию
канала из единого кристалла напряженного кремния. "Напряжение"
в данном случае означает деформирование кристаллической решетки материала.
Как оказалось, сквозь структурно нарушенный кремний как электроны (+10%
для NМOS), так и дырки (+25% для PMOS) проходят с меньшим сопротивлением.
Улучшение подвижности увеличивает максимальный ток транзистора в открытом
состоянии.

Для NМOS- и PMOS-транзисторов напряженное состояние достигается различными
методиками. В первом случае все очень просто: обычно транзистор сверху
"укрыт" слоем нитрида кремния, который выполняет функцию предохраняющей
маски, а для создания напряжения в канале толщину слоя нитрида увеличивают
вдвое. Это ведет к созданию дополнительной нагрузки на области истока
и стока и, соответственно, растягивает, деформирует канал.

PMOS-транзисторы "напрягают" по другой схеме. Сначала зоны
истока и стока вытравливают, а потом наращивают в них слой SiGe. Атомы
германия превышают по размерам атомы кремния и поэтому германиевые прослойки
всегда использовались для создания напряжения в кремнии. Однако особенность
технологии Intel заключается в том, что в данном случае сжатие кремниевого
канала происходит в продольном сечении.

Новый технологический процесс также позволил увеличить количество слоев
металлизации с шести до семи (медные соединения). Любопытно, что на производственной
линии "плечом к плечу" трудятся как литографические аппараты
нового поколения с длиной волны 193 нм, так и их предшественники с длиной
волны 248 нм. Вообще процент повторно использованной техники достиг 75,
что позволило снизить стоимость модернизации фабрик.

Особенности Prescott

В дискуссиях, предшествовавших выпуску процессора на ядре Prescott, он в шутку именовался не иначе как "Pentium 5". Собственно, именно таким был типичный ответ компьютерного профи на вопрос "Что такое Prescott?". Конечно, Intel не стала менять торговую марку, да и достаточных оснований для этого не было. Вспомним практику выпуска программного обеспечения — там смена номера версии происходит только при кардинальной переработке продукта, тогда как менее значительные изменения обозначаются дробными номерами версий. В процессорной индустрии дробные номера пока не приняты, и то, что Prescott продолжил линейку Pentium 4, как раз и является отражением того факта, что перемены носят не настолько радикальный характер.

Процессоры на ядре Prescott хоть и содержат немало новшеств и модификаций по сравнению
с Northwood, однако основаны на той же архитектуре NetBurst, имеют ту же корпусировку,
что и предыдущие Pentium 4, устанавливаются в тот же разъем Socket 478 и, в принципе,
должны работать на большинстве материнских плат, поддерживающих 800 MHz FSB и
обеспечивающих должные напряжения питания (естественно, потребуется обновление
BIOS).

Детальное изучение практических вопросов, касающихся Prescott, мы оставим для отдельного материала. А пока попробуем рассмотреть, какие изменения появились в Prescott, и понять, насколько этот процессор отличается от своего предшественника и чего можно в результате ожидать.

Основные новшества, реализованные в ядре Prescott, следующие:

  • Перевод производства кристаллов на техпроцесс 90 нм.
  • Возросшая длина конвейера (с 20 до 31 стадии).
  • Вдвое увеличенные кэши L1 (кэш данных — с 8 до 16 KB) и L2 (с 512 KB до
    1 MB).
  • Изменения в архитектуре:
    -модифицированный блок предсказания переходов;
    -усовершенствованная логика работы L1-кэша (улучшенная предварительная выборка
    данных);
    -появление новых блоков в процессоре;
    -увеличенный объем некоторых буферов.
  • Усовершенствованная технология Hyper-Threading.
  • Появление поддержки нового набора SIMD-инструкций SSE3 (13 новых команд).

Главные различия трех процессорных ядер, использовавшихся в Pentium 4, сведены в табл. 2. Число транзисторов в Prescott увеличилось более чем вдвое — на 70 млн. Из них, по грубым оценкам, порядка 30 млн. можно отнести на счет удвоившегося L2-кэша (дополнительные 512 KB, по 6 транзисторов на одну ячейку). Причем остается еще вполне солидное число, и даже по одному этому значению можно косвенно судить о масштабах произошедших в ядре изменений. Заметим, что, несмотря на такой рост числа элементов, площадь ядра не только не увеличилась, но даже уменьшилась по сравнению с Northwood.

С 90-нанометровым технологическим процессом все, в общем-то, понятно (конечно, на упрощенном, "пользовательском" уровне). Меньший размер транзисторов позволит снизить напряжение питания процессора и уменьшить рассеиваемую им мощность, а следовательно, и нагрев. Это откроет дорогу для дальнейшего увеличения тактовых частот, которое хотя и будет сопровождаться ростом тепловыделения, но "начало отсчета" для этого роста будет уже другим, несколько ниже. Отметим, что с учетом большего числа транзисторов в Prescott по сравнению с Northwood правильнее было бы говорить не об уменьшении, а о сохранении или же меньшем увеличении рассеиваемой мощности.

Удлиненный конвейер . Как видно из табл. 2, по длине конвейера Prescott (31 стадия) более чем наполовину превосходит Northwood. Что за этим кроется, вполне понятно: это не первый случай, когда Intel увеличивает длину конвейера, нацеливаясь на повышение тактовых частот — известно, что чем длиннее конвейер, тем лучше "разгоняется" процессорное ядро. В принципе, сложно сказать однозначно, так ли необходимо такое "удлинение" на текущем этапе, на частотах в районе 3,5 GHz — энтузиасты-оверклокеры разгоняли Pentium 4 (Northwood) и до более высоких значений. Но рано или поздно рост числа стадий оказался бы неизбежен — так почему бы не совместить это событие с выпуском нового ядра?

Увеличенные объемы кэшей и буферов . В принципе, этот пункт напрямую связан с предыдущим. Чтобы обеспечить работой длинный конвейер на высоких частотах, желательно иметь большего объема "подручный склад" в виде кэша для уменьшения количества простоев, при которых процессор ожидает загрузки требуемых данных из памяти. Кроме того, хорошо известно, что при прочих равных из двух процессоров с разной длиной конвейера производительнее окажется тот, у которого этот параметр меньше. При ошибках предсказания перехода процессор вынужден "сбрасывать" свой конвейер и загружать его работой по-новому. И чем большее число стадий в нем содержится, тем болезненнее оказываются подобные промахи. Полностью их исключить, конечно же, нельзя, и на одинаковых частотах Northwood и Prescott последний оказался бы менее производительным… не будь у него большего L2-кэша, во многом компенсирующего отставание. Естественно, здесь все зависит от специфики конкретных приложений, что мы и попытаемся проверить в практической части.

Как говорилось выше, в Prescott увеличен не только общий L2-кэш, но и L1-кэш данных, объем которого вырос с 8 до 16 KB. Также изменились его организация и часть логики работы — к примеру, введен механизм принудительного продвижения (force forwarding ), уменьшающий задержки в случаях, когда зависимая операция загрузки данных из кэша не может спекулятивно выполняться до завершения предшествующей операции помещения этих данных в кэш.

Кроме объемов кэшей, увеличению подверглась и емкость двух планировщиков, отвечающих за хранение микроопераций (uops ), которые используются в инструкциях x87/SSE/SSE2/SSE3. Это, в частности, позволило более эффективно находить параллелизм в мультимедиаалгоритмах и выполнять их с лучшей производительностью.

Собственно, некоторых новшеств в архитектуре Pentium 4, реализованных в Prescott, мы уже успели коснуться, поскольку они "разбросаны" по ядру процессора и затрагивают многие его блоки. Следующим важным изменением является…


Модифицированный блок предсказания переходов . Как известно, точность
работы этого блока является критически важной для обеспечения высокой производительности
современного процессора. "Просматривая" программный код, следующий за
выполняемым в настоящий момент, процессор может заранее выполнять части
данного кода — это хорошо известное спекулятивное выполнение . Если же
в программе встречается ветвление в результате условного перехода (если-то-иначе ),
то возникает вопрос о том, какую из двух веток "лучше" выполнять заранее.
Алгоритмы в Northwood действовали относительно просто: переходы назад предполагались
совершающимися, вперед — нет. Это большей частью работало для циклов,
но не для других видов переходов. В Prescott используется понятие длины
перехода : исследования показали, что если дальность перехода превышает
определенный предел, то переход с большой долей вероятности совершаться не будет
(соответственно, спекулятивно выполнять эту часть кода не нужно). Также в Prescott
введен более тщательный анализ самих условий перехода, на основании которого принимаются
решения о вероятности выполнения перехода. Кроме статических алгоритмов предсказания,
изменениям подверглись и динамические алгоритмы (кстати, новые идеи были частично
заимствованы из мобильного Pentium M).

Появление новых блоков в процессоре . Два новых блока в Prescott — это блок побитовых сдвигов и циклических сдвигов (shifter/rotator) и выделенный блок целочисленного умножения . Первый позволяет осуществлять наиболее типичные операции сдвига на одном из двух быстрых ALU, работающих на удвоенной частоте ядра CPU (в предыдущих модификациях Pentium 4 эти операции выполнялись как целочисленные и занимали несколько тактов). Для осуществления целочисленного умножения ранее задействовались ресурсы FPU, что достаточно долго — нужно было передать данные в FPU, выполнить там сравнительно медленное умножение и передать результат обратно. В Prescott для ускорения этих операций добавлен новый блок, отвечающий за такие операции умножения.

Улучшенный Hyper-Threading . Конечно, все перечисленные выше новшества введены в Prescott неспроста. По словам специалистов Intel, большинство модификаций в логике работы кэшей, очереди команд и пр. так или иначе связаны с быстродействием процессора при использовании Hyper-Threading, т. е. при одновременной работе нескольких программных потоков. В то же время на производительность "однопоточных" (single-threaded) приложений эти нововведения оказывают лишь незначительное влияние. Также в Prescott увеличился набор инструкций, которым "позволено" исполняться на процессоре параллельно (например, операция с таблицей страниц и операция с памятью, разбивающая строку кэша). Опять-таки, для однопоточных приложений невозможность совмещения подобных операций практически не сказывалась на производительности, тогда как при выполнении двух потоков такое ограничение зачастую становилось "узким местом". Другой пример — если в Northwood происходило "непопадание в кэш" (cache miss) и возникала необходимость чтения данных из оперативной памяти, следующие операции просмотра кэша откладывались до окончания этого действия. В результате одно приложение, часто "промахивающееся" мимо кэша, могло существенно затормозить работу остальных потоков. В Prescott этот конфликт легко преодолевается, операции могут выполняться параллельно. Также в Prescott была переделана логика арбитража и разделения ресурсов между потоками с целью увеличения общей производительности.

Инструкции SSE3. Как мы помним, последний раз расширение набора SIMD-инструкций
Intel провела, выпустив первый Pentium 4 (Willamette) и реализовав в нем SSE2.
Очередное расширение, получившее название SSE3 и содержащее 13 новых инструкций,
осуществлено в Prescott. Все они, за исключением трех, используют SSE-регистры
и предназначены для повышения производительности в следующих областях:

  • быстрое преобразование вещественного числа в целое (fisttp );
  • сложные арифметические вычисления (addsubps, addsubpd, movsldup, movshdup,
    movddup
    );
  • кодирование видео (lddqu );
  • обработка графики (haddps, hsubps, haddpd, hsubpd );
  • синхронизация потоков (monitor, mwait ).

Естественно, детальное рассмотрение всех новых инструкций выходит за рамки материала, эта информация приведена в соответствующем руководстве для программистов. Инструкции первых четырех категорий служат как для ускорения выполнения самих операций, так и для того, чтобы сделать их более "экономными" в смысле использования ресурсов процессора (и, следовательно, оптимизации работы Hyper-Threading и механизма спекулятивного выполнения). Программный код при этом также значительно сокращается и, что немаловажно, упрощается. Например, инструкция ускоренного преобразования вещественного числа в целое fisttp заменяет семь (!) команд традиционного кода. Даже по сравнению с инструкциями SSE2 (которые сами по себе также ускоряют выполнение кода и сокращают его объем) команды SSE3 во многих случаях дают немалую экономию. Две инструкции последней группы — monitor и mwait — позволяют приложению (точнее потоку ) сообщать процессору, что в данный момент оно не выполняет полезной работы и находится в режиме ожидания (например, записи в определенную ячейку памяти, возникновения прерывания или исключительной ситуации). Процессор при этом может переводиться в режим пониженного энергопотребления или же, при использовании Hyper-Threading, отдавать все ресурсы другому потоку. В общем, с SSE3 для программистов открываются новые возможности по оптимизации кода. Проблема здесь, как всегда в таких случаях, одна: пока новый набор инструкций не стал общепринятым стандартом, разработчикам ПО придется поддерживать две ветки кода (с SSE3 и без оной), чтобы приложения работали на всех процессорах…

Камо грядеши?..

В общем, объем новшеств, реализованных в ядре Prescott, вполне можно назвать
значительным. И хотя до "настоящего Pentium 5" он недотягивает, но к
"четырем с половиной" вполне может приблизиться. Переход от ядра Northwood
к Prescott — в принципе, эволюционный процесс, хорошо укладывающийся в общую
стратегию Intel. Постепенные изменения в архитектуре Pentium 4 хорошо видны на
схеме: архитектура модифицируется и пополняется новыми особенностями — идет последовательная
оптимизация процессора под определенный набор ПО.

Чего же можно ожидать от Prescott? Пожалуй, прежде всего (хотя это может показаться и несколько странным) — новых частот. Intel сама признает, что на равных частотах производительность Prescott и Northwood будет мало отличаться. Положительное влияние большого L2-кэша и прочих новшеств Prescott во многом "компенсируется" его значительно более длинным конвейером, который болезненно реагирует на ошибки предсказания переходов. И даже с учетом того, что блок этого самого предсказателя переходов был усовершенствован, все равно идеальным он быть не может. Главное преимущество Prescott в другом: новое ядро позволит дальше наращивать частоту — до значений, недостижимых ранее с Northwood. По планам Intel ядро Prescott рассчитано на два года, пока его не сменит следующее ядро, изготовленное по технологии 65 нм (0,065 мкм).

Поэтому выпущенный сейчас процессор на новом ядре Prescott не претендует прямо со старта на лавры чемпиона производительности и во всей красе должен проявить себя в будущем. Еще одним подтверждением тому является и позиционирование процессора: Pentium 4 на ядре Prescott рассчитан на mainstream-системы, в то время как топовым CPU был и остается Pentium 4 Extreme Edition. Кстати, хотя планка частот у процессоров Intel номинально поднялась до 3,4 GHz с выходом Prescott, но появление первых OEM-систем на базе Pentium 4 3,4 GHz на новом ядре произойдет несколько позднее в этом квартале (а ведь коммерческие поставки Prescott начаты еще в IV квартале 2003 г.).

Еще одна область, где может проявить себя Prescott (и наверняка проявит), — это работа ПО, оптимизированного под SSE3. Процесс оптимизации уже начался, и на сегодня существует как минимум пять приложений с поддержкой нового набора инструкций: MainConcept (MPEG-2/4), xMPEG, Ligos (MPEG-2/4), Real (RV9), On2 (VP5/VP6). В течение 2004 г. поддержка SSE3 должна появиться в таких пакетах, как Adobe Premiere, Pinnacle MPEG Encoder, Sony DVD Source Creator, Ulead MediaStudio и VideoStudio, всевозможные аудио- и видеокодеки и т. д. Вспоминая процесс оптимизации под SSE/SSE2, можно понять, что результаты SSE3 мы увидим, но отнюдь не сразу — опять-таки, это в определенном смысле "задел на будущее".

Ну а что же "по ту сторону линии фронта"? Главный конкурент Intel по-прежнему идет своим путем, все дальше отдаляясь от "генеральной линии". AMD продолжает наращивать "голую производительность", пока что обходясь значительно более низкими частотами. Контроллер памяти, в Athlon 64 перекочевавший из северного моста в процессор, подлил масла в огонь, обеспечив невиданную ранее скорость доступа к ОЗУ. А недавно был выпущен процессор с рейтингом 3400+ (нет, о полном соответствии продукту конкурентов по частоте никто не говорит…).

Однако Intel и AMD сейчас находятся примерно в равных ситуациях — их топовые процессоры ожидают выхода соответствующего оптимизированного ПО, чтобы проявить себя на полную мощность. Intel все больше "уходит в мультимедиа": для офисного ПО производительности Pentium 4 хватает с лихвой, и чтобы Prescott реализовал свой потенциал, нужны оптимизированные мультимедиаприложения (и/или высокие тактовые частоты, в возможности достижения которых можно не сомневаться). Стоит отметить тот факт, что переработка кодеков под SSE3 — пожалуй, не самая сложная операция, а эффект от этого сразу почувствуют все приложения, использующие такие кодеки (причем переработка самих приложений при этом совсем необязательна).

С другой стороны, в середине 2004 г. выйдет 64-разрядная версия Windows для платформы AMD64, на которой как раз и должны проявиться возможности Athlon 64. Конечно, здесь встанет обычный вопрос о наборе приложений под новую ОС, без которых система остается практически бесполезной. Но вспомним, что уже как минимум существуют те же кодеки, откомпилированные под 64-битные Athlon. Так что есть вероятность того, что в недалеком будущем и платформе AMD будет где себя показать. В общем, создается впечатление, что пока титаны просто накачивают мускулы, строят оборонительные сооружения и готовят тылы перед главным… нет, скорее, очередным сражением…

Всем привет Затрону тему процессоров, а то пишу все о программах. Поговорим про мой любимый Pentium 4, конечно он старый, но это был первый мой процессор по настоящему мощный. Да и цена его была также немаленькой, можно тоже сказать что мощной.

Если вы решили собрать себе компьютер на базе Pentium 4, то наверно вы очень редкий человек, ибо мне трудно в это поверить Pentium 4 сегодня уже отжил свое, а семейство Пентиум дальше развивается, вот у меня на данный момент тоже Pentium, только модель G3220, это сокет 1150. В общем современный пенек.

Но как бы там не было, бывают всякие ситуации, например у вас материнская плата под 775-тый сокет, которая поддерживает максимум только Пентиумы. Таких материнок кстати много, и не все покупатели об этом знают, что там только Пентиумы и Целероны идут, а берут и думаю что можно поставить четырехъядерный Quad.

Так вот, у меня был именно Pentium 4 630 — это стандартная и как мне кажется самая популярная модель. Pentium 4 630 немного греется, но не слишком, и при этом не самый слабый, частота там 3 Ггц. В принципе именно эту модель я и вам советую, единственное что — поищите не модель не 630, а 631, это более новее.

Что я могу сказать о процессоре? Скажу так, хотите верьте, хотите нет — это обычный, нормальный процессор для офисного ПК. И об этом говорят его характеристики — поддержка потоков (технология гипертрейдинг), 2 Мб кэша второго уровня, высокая частота (все таки 3 Ггц). И главное, что так как есть потоки, то в Windows такой процессор видится как двухядерный.

Какие игры, программы потянет Пентиум 4? Офис — потянет. Слишком тяжелые страницы в браузере могут работать медленно, это из-за флеш технологии. Игры многие потянет, но тут важно понимать, что для того чтобы Пентиум 4 тянул более-менее игры, нужно чтобы была мощная видеокарта. Тогда на минимальных настройках играть во многие можно. И перед тем как думать, что потянет Пентиум, а что нет, подумайте про оперативку. Вам нужно минимум 2 Гб для более-менее нормального компа, а лучше все 4 Гб, чтобы и в игры пошпилить. Тип оперативки не играет в данном случае большой роли, что DDR1 что DDR2 — разница будет минимальной.

А что еще на такой комп поставить еще SSD накопитель? Тогда комп будет еще быстрее и не каждый поверит что там процессор 10-летнй давности стоит

Какой самый мощный Pentium 4? Хм, хороший вопрос. Я был обладателем такой модели, их два, разница только в поддержке технологии виртуализации. Это Pentium 4 670 и 672 — эти две модели имеют тактовую частоту 3.8 Ггц (у меня была 670 модель), и конечно это хорошо ощутимо. То есть Windows и программы реально работали куда быстрее, чем на 630-той модели.

Какие минусы у процессоров Pentium 4? Главные минусы которые я вижу, это то сколько они потребляют энергии и температура. Все это так, как у современных топовых процов. Вообще-то это и норма, ибо на то время, а это 2004-2005 годы, тогда конечно Pentium 4 считался топовым и мощным. Температура без специального кулера может быть 60 градусов, это в обычном рабочем состоянии, при том что технологии энергосбережения развиты в Пентиумах мягко говоря слабо.

Потребляют Pentium 4 примерно 80 ватт, это на 775-том сокете. На 478 сокете немного меньше — под 70 ватт. Учтите это, при том что мой Pentium G3220 потребляет всего 54 ватт, но по производительности далеко обходит даже разогнанный Пентиум например до 4 ГГц. Вот такие дела.

Зато цена сегодня за эти процессоры очень низкая, можно брать чуть ли не по кг

Вообще есть много хороших моделей, я советую просто смотреть на индекс модели, все что начинается от 630 — это более-менее нормальные, но чем выше индекс, тем больше температура. Есть еще 660, там частота 3.6 Ггц (если не ошибаюсь). Есть два типа индексов или два типа моделей процессоров Pentium 4, это 600-тая линейка и 500-тая. Отличия в основном в кэше, в 500-той линейке он составляет 1 мб. Это все относится к 775-тому сокету.

478 сокет также имеет в своем роду топовые Пентуим 4, там максимальная частота 3.4 (в 775 сокете 3.8) и также в самых топовых моделях есть потоки, то есть гипертрейдинг. То есть можно сказать, что первый псевдо-двухядерный процессор пользователи могли увидеть именно на 478 сокете и примерно в 2002-2003 году. Но сейчас не так часто можно встретить б/у процессоры на 478 сокет и с наличием потоков. Кстати технология потоков была позаимствованная у серверных процессоров.

ВведениеЕщё в прошлом году компания Intel говорила о грядущей смене приоритетов в создании новых процессоров. Ввиду возникших трудностей на пути наращивания тактовых частот процессоров Pentium 4, компания решила сосредоточить основные усилия не на увеличении их производительности, а на расширении функциональности. В течение прошлого года были сделаны первые подвижки в этом направлении: например, CPU стали маркироваться при помощи процессорного рейтинга, а тактовая частота в маркировке была отодвинута на второй план. Однако, реальные шаги, направленные на придание процессорам новых функций, были запланированы на этот, 2005 год. Поэтому, первых в этом году анонсов процессоров мы ждали с особым нетерпением.
И вот, свершилось. Сегодня компания Intel представляет на суд потребителей новые процессоры в семействе Pentium 4, в основе которых лежит обновлённое ядро, известное под кодовым именем Prescott 2M. Хотя, взятый Intel курс на внедрение в настольные системы двуядерных процессоров пока никак не отразился в новинках, новые Pentium 4, обладающие рейтингами вида 6XX, наделены рядом новых и интересных возможностей. Именно поэтому процессоры Pentium 4 6XX на базе ядра Prescott 2M и являются столь интересными объектами для изучения: в этих CPU мы сталкиваемся с увеличенной кеш-памятью второго уровня и с новыми для сектора настольных компьютеров технологиями Enhanced Memory 64 Technology и Enhanced Intel SpeedStep.
Параллельно с линейкой Pentium 4 6XX Intel выводит на рынок и ещё один процессор, нацеленный на энтузиастов. Этот CPU, входящий в семейство Pentium 4 Extreme Edition, в отличие от линейки Pentium 4 6XX, призван поднять планку производительности и стать наиболее быстрым CPU от Intel на сегодняшний день. А потому, новый Pentium 4 Extreme Edition, хотя и лишён некоторой функциональности Pentium 4 6XX, имеет большую тактовую частоту и работает при более высокой частоте шины.
Впрочем, подходить к новым продуктам Intel можно и с другой стороны. На фоне несомненных успехов основного конкурента, компании AMD, процессоры Pentium 4 смотрелись до сегодняшнего дня не лучшим образом. Старшие модели Athlon 64 превосходили аналогичные продукты Intel как по быстродействию, так и по поддерживаемым функциям. Теперь же, очевидно, Intel предпринимает очередную попытку настичь конкурента. Увеличение кеш-памяти второго уровня в процессорах на новом ядре Prescott 2M имеет под собой цель поднять их производительность. А внедрение в Pentium 4 6XX новых технологий Enhanced Memory 64 Technology и Enhanced Intel SpeedStep можно рассматривать как ответ Intel на имеющиеся в процессорах Athlon 64 технологии AMD64 и Cool"n"Quiet.
В данном обзоре мы попробуем оценить новинки от Intel со всех сторон. Мы посмотрим как на то, какие новые возможности способны привнести новые технологии, появившееся в процессорах с ядром Prescott 2M, так и на то, насколько изменилась производительность новых CPU семейств Pentium 4 6XX и Pentium 4 Extreme Edition, и смогут ли они составить достойную конкуренцию старшим моделям процессоров Athlon 64 и Athlon 64 FX. Однако, по традиции, практическое исследование новинок предваряет небольшая теоретическая часть.

Новые процессоры Pentium 4 6XX и Pentium 4 Extreme Edition 3.73 ГГц

Итак, сегодня, 20 февраля 2005 года компания Intel официально объявила новые процессоры Pentium 4 Extreme Edition 3.73 ГГц и Pentium 4 серии 6XX. Все эти процессоры основываются на одном и том же процессорном ядре Prescott 2M, основным отличительным признаком является увеличенная кеш-память второго уровня, которая имеет объём 2 Мбайта. В остальном же, включая и 90 нм технологический процесс с использованием растянутого кремния, ядро Prescott 2M подобно своему предшественнику, ядру Prescott, которое уже давно используется в процессорах Pentium 4 серии 5XX.
Сходство между Prescott и Prescott 2M видно даже на фотографиях этих ядер:

PrescottPrescott 2M


Как видим, кеш память у Prescott 2M действительно стала в два раза больше. В остальном, видимых отличий между ядрами не наблюдается.
Семейство процессоров Pentium 4 6XX состоит на сегодняшний день из нескольких моделей с частотами от 3.0 до 3.6 ГГц. Все эти процессоры, как и их предшественники, используют шину Quad Pumped Bus с частотой 800 МГц. Младшая модель имеет процессорный номер 630, модель с частотой 3.2 ГГц – 640, 3.4-гигагерцовый процессор – 650 и CPU с частотой 3.6 ГГц – 660. Следует заметить, что частота старшего процессора в линейке "шестисотых", Pentium 4 660, меньше частоты старшего процессора на базе обычного ядра Prescott, Pentium 4 570, составляющей 3.8 ГГц. Однако при этом Pentium 4 6XX имеют по сравнению со своими младшими братьями ряд преимуществ.
Во-первых, процессоры семейства Pentium 4 6XX поддерживают технологию Enhanced Memory 64 Technology (EM64T) – 64-битные расширения архитектуры x86, являющиеся аналогом расширений AMD64. Благодаря этому все процессоры Pentium 4 6XX совместимы с операционной системой Windows XP Professional x64 Edition, которой немногим ранее мы посвятили отдельную статью . Благодаря совместимости с этой операционной системой, Pentium 4 6XX теперь могут похвастаться целым рядом преимуществ, знакомым нам по процессорам Athlon 64. В числе оных в первую очередь следует отметить одновременную совместимость с 32-битным и 64-битным программным обеспечением, а также поддержку объёмов памяти, превышающих 4 Гбайта.
Второй плюс процессоров Pentium 4 6XX - это поддержка ими технологии Enhanced Intel SpeedStep (EIST). Данная технология является полным аналогом аналогичного механизма, реализованного в мобильных процессорах Intel. Суть данного механизма заключается в том, что процессоры Pentium 4 6XX могут снижать свою частоту в моменты, когда от них не требуется высокая производительность. При помощи данного метода достигается существенное снижение тепловыделения и энергопотребления.
При этом все CPU семейства Pentium 4 6XX поддерживают технологию Execute Disable Bit (XD bit), появившуюся в Pentium 4 5XX с выходом старшей модели с частотой 3.8 ГГц и процессорным номером 570.
Таким образом, несмотря на свою более низкую тактовую частоту, процессоры Pentium 4 семейства 6XX по числу поддерживаемых функций превосходят своих предшественников, Pentium 4 5XX.
Следует напомнить, что Intel отказался от выпуска процессоров на базе ядра Prescott с частотами 4 ГГц и выше. Это относится и к CPU, в основе которых лежит ядро Prescott 2M. То есть, старшая модель в линейке 5XX, Pentium 4 570 с частотой 3.8 ГГц так и останется самой быстрой моделью CPU на базе ядра Prescott. В линейке же 6XX на сегодня старшая модель процессора с номером 660 имеет частоту 3.6 ГГц. Соответственно, более быстрые процессоры в этом семействе появляться могут. Так, во втором квартале текущего года Intel собирается объявить Pentium 4 670 с тактовой частотой 3.8 ГГц.
Впрочем, вопрос относительно того, какой из процессоров Intel является самым быстрым на сегодняшний день, решается не в пользу ни Pentium 4 660, не в пользу Pentium 4 570. На эту роль претендует ещё один процессор на базе ядра Prescott 2M, анонсированный сегодня и отнесённый к семейству Pentium 4 Extreme Edition. Данная новинка обладает тактовой частотой 3.73 ГГц и рассчитана на работу при частоте шины 1066 МГц. При этом, хотя большинство характеристик Pentium 4 Extreme Edition 3.73 ГГц повторяет характеристики серии Pentium 4 6XX, этот процессор не поддерживает технологию EIST. Технологии же XD bit и EM64T в этом CPU включены.
А вот какую информацию выдаёт о новых процессорах Pentium 4 Extreme Edition 3.73 ГГц и Pentium 4 660 диагностическая утилита CPU-Z:


Intel Pentium 4 660


Intel Pentium 4 Extreme Edition 3.73 ГГц


Подводя итог, приведём формальные характеристики анонсированных сегодня процессоров Pentium 4 6XX и Pentium 4 Extreme Edition. В таблице ниже для сравнения также приведены характеристики процессоров Pentium 4 5XX.


Что касается теплового пакета новых процессоров, то их тепловыделение укладывается в те же самые рамки, что и у процессоров серии 5XX. Соответственно Pentium 4 6XX c частотами до 3.4 ГГц включительно вписываются в TDP в 84 Вт, старшие же модели, а также новый Pentium 4 Extreme Edition 3.73 ГГц имеют TDP в 115 Вт.
Таким образом, новые процессоры могут использоваться в тех же самых материнских платах, что и предшествующие LGA775 Pentium 4. Единственное требование: поддержка новых CPU со стороны BIOS материнской платы.
А вот как выглядят новые процессоры:






Слева-направо: Pentium 4 570, Pentium 4 660,
Pentium 4 Extreme Edition 3.73 ГГц

Ядро Prescott 2M: изменения в кеш-памяти

Так как одним из основных нововведений, произошедших с процессорами Pentium 4 при их переводе на использование нового ядра Prescott 2M, стало увеличение кеш-памяти второго уровня, следует уделить немного внимания организации L2 кеш-памяти в новом ядре. Чтобы понять, как же устроена кеш-память второго уровня в новом ядре Prescott 2M, мы вновь воспользовались диагностической утилитой CPU-Z. Для сравнения, мы приводим и аналогичную информацию, относящуюся к более старому ядру, Prescott:

Как видим, у Prescott 2M и Prescott кеш-память второго уровня (да и первого тоже) организована совершенно одинаково. Различие только в размере. Кеш второго уровня у обоих ядер имеет 8 зон ассоциативности и оперирует строками длиной 64 байт. Однако наличие одинакового количества зон ассоциативности у кеш-памяти разного объёма автоматически означает, что поиск данных в более ёмком кеше должен выполняться дольше. Соответственно, L2 кеш процессоров на базе ядра Prescott 2M должен быть более медленным, чем L2 кеш процессоров, в основе которых лежит обычное ядро Prescott.
Чтобы проверить эту гипотезу, мы вооружились утилитой Cache Burst 32. Тестовая система, на которой мы проводили измерения, основывалась на материнской плате Intel Desktop Board D925XECV2 на чипсете i925XE Express и была снабжена двухканальной DDR2-533 SDRAM с таймингами 4-4-4-11. Для опытов мы использовали процессоры Pentium 4 560 и Pentium 4 660 на ядрах Prescott и Prescott 2M соответственно.












Как показывают результаты теста, действительно, скорость чтения из кеш-памяти второго уровня у нового процессора Pentium 4 660 ниже, чем у аналогичного Pentium 4 560 с меньшим объёмом кеш-памяти. При этом скорость записи и латентность кешей у этих CPU совпадает. Однако при копировании данных мы видим, что кеш-память процессора на ядре Prescott 2M работает несколько быстрее, чем кеш-память CPU с ядром Prescott.
Таким образом, мы вынуждены констатировать, что увеличение кеш-памяти второго уровня у процессоров Pentium 4 6XX повлекло за собой и некоторые глубинные изменения, в результате которых скорость работы с данными в L2 кеше изменилась. Причём, не в лучшую сторону. Отметим, что подобное же явление уже один раз происходило с NetBurst архитектурой при переходе от ядра Northwood к ядру Prescott. Так что мы вновь должны заметить, что увеличение объёма кеш-памяти второго уровня не лучшим образом отражается на её быстродействии.

Подробности о Demand Based Switching

С вводом в процессорах Pentium 4 6XX технологии Enhanced Intel SpeedStep (EIST) эти процессоры стали обладателями сразу трёх технологий, попадающих под собирательное название Demand Based Switching (переключение по потребностям). Первые две технологии мы уже рассматривали, обзирая процессор Pentium 4 570J, который был основан на ядре Prescott степпинга E0. С появлением этого степпинга ядра процессоры Pentium 4 получили в свое распоряжение новый механизм термального мониторинга TM2 и новый режим для снижения энергопотребления C1E. EIST дополнила эти технологии в новом ядре Prescott 2M и теперь новые процессоры Pentium 4 6XX могут похвастать ещё более низким средневзвешенным энергопотреблением и тепловыделением.
Технология EIST предназначается для управления частотой процессора и его напряжением в зависимости от степени загрузки, как это делается в мобильных компьютерах. В настольном сегменте аналогом EIST является технология Cool"n"Quiet от AMD, реализованная в процессорах семейства Athlon 64. Можно сказать, что EIST позволяет более рационально использовать ресурсы процессора: при работе в приложениях, не загружающих процессор на 100% его максимальная тактовая частота никому не нужна, в такие моменты её можно спокойно снизить, параллельно уменьшив тепловыделение и энергопотребление CPU. Если же приложение требует от процессора максимальной производительности, то он увеличит частоту до номинальной отметки, попутно подняв напряжение на ядре до нужной величины.
Включается технология EIST абсолютно также, как и Cool"n"Quiet. В Windows XP, например, на закладке Power Option Properties необходимо изменить схему питания компьютера со стандартной Home/Office Desk на Minimal Power Management. После этой установки процессор начнёт снижать свою частоту в моменты низкой загрузки. Необходимый для работы этой технологии процессорный драйвер входит в Service Pack 2, поэтому технология EIST становится совместимой с Windows XP после установки SP2.
На первый взгляд, EIST не вызывает никаких вопросов, однако эта достаточно интересная технология таит в себе и немало сюрпризов. Дело в том, что все три технологии семейства Demand Based Switching, C1E, TM2 и EIST используют один и тот же механизм. Именно поэтому мы решили ещё раз вернуться к рассказу о том, как же на самом деле работают эти технологии.
Функционирование C1E, TM2 и EIST основано на том факте, что процессоры Pentium 4 с ядром Prescott, начиная со степпинга E0, умеют изменять свой коэффициент умножения и Vid "на лету". Конкретнее, процессоры с ядрами Prescott и Prescott 2M при необходимости могут снижать свой множитель до 14x (а это – минимальное значение для ядра Prescott), уменьшая при этом своё напряжение питания примерно на 0.25В. Сочетание этих характеристик и определяет повсеместно эксплуатируемый "режим пониженного энергопотребления", при котором процессор работает на частоте 2.8 ГГц со сниженным напряжением питания. Вот, например, какую информацию выдаёт утилита CPU-Z про процессор Pentium 4 660 (штатная частота 3.6 ГГц), находящийся в этом "режиме пониженного энергопотребления":


Ещё одна интересная деталь заключается в том, что для всех процессоров серии Pentium 4 6XX с разными тактовыми частотами режим пониженного энергопотребления одинаков: все они в этом режиме работают на частоте 2.8 ГГц вне зависимости от их номинальной частоты.
Важно заметить, что для обеспечения стабильности работы переход в этот режим и выход из него происходит не скачкообразно, а постепенно. Так, при входе в "режим пониженного энергопотребления" процессор сначала понижает свой множитель до 14x, а лишь потом постепенно снижет напряжение питания. Выход из этого режима происходит в обратном порядке: сначала постепенно увеличивается напряжение, а только потом устанавливается штатный множитель.


Все три технологии из серии Demand Based Switching, C1E, TM2 и EIST, используют этот режим пониженного энергопотребления. Различие же между C1E, TM2 и EIST заключается лишь в том, в какие моменты включается данный режим.
Технология C1E (Enhanced Halt State) активизирует режим пониженного энергопотребления при поступлении на процессор команды Halt, говорящей о переводе процессора в режим ожидания. Эта команда отдаётся процессору операционной системой в моменты, когда для исполнения нет никаких других инструкций. То есть, если ранее процессоры Pentium 4 при поступлении команды Halt просто переводили часть своих исполнительных устройств в режим бездействия, режим C1E позволяет ещё сильнее снизить тепловыделение и энергопотребление благодаря дополнительному уменьшению тактовой частоты, на которой работает активная часть CPU в режиме ожидания.
Технология TM2 (Thermal Monitor 2) , хотя и предназначается для защиты процессора от перегрева, использует тот же самый 2.8-гигагерцовый режим пониженного энергопотребления. TM2 переводит CPU в этот режим по команде, поступающей от встроенного в ядро процессора термодатчика. Если температура процессора превышает некоторое предельно допустимое значение температуры (а это значение калибруется индивидуально для каждого экземпляра CPU), частота процессора снижается до 2.8 ГГц и одновременно понижается напряжение питания процессорного ядра. Этот механизм позволяет снизить температуру процессора до допустимых пределов примерно на 40% быстрее, нежели при используемом раньше механизме TM1, основанном на модуляции несущей частоты.
Технология EIST (Enhanced Intel SpeedStep) , как это не покажется странным, также переводит процессор в 2.8-гигагерцовый режим пониженного энергопотребления. В рамках этой технологии переход в данное состояние инициируется операционной системой. Если драйвер процессора рапортует о низкой загрузке CPU в конкретный момент времени, операционная система через соответствующую команду ACPI переводит процессор в режим пониженного энергопотребления. То есть, благодаря EIST удаётся снизить тепловыделение процессора не только в моменты его полного простоя, но и при небольшой загрузке.
Теперь о неприятном. Поскольку минимально возможным коэффициентом умножения для процессоров на базе ядра Prescott (и его производной Prescott 2M) является 14x, использование технологий C1E, TM2 и EIST возможно только для CPU, имеющих больший множитель. Например, именно поэтому новым процессором Pentium 4 Extreme Edition 3.73 ГГц технологии C1E, TM2 и EIST не поддерживаются: штатный множитель этого CPU равен 14x. Соответственно, чем выше штатный множитель у процессора, тем больший эффект способны принести технологии семейства Demand Based Switching.

Температурный режим и энергопотребление

После того, как мы разобрались, какие новые технологии для снижения энергопотребления применил Intel в своих процессорах семейства Pentium 4 6XX, самое время посмотреть, как они проявляются на практике. Поэтому, мы изучили температурный режим и энергопотребление новых процессоров во время их реальной работы.
Для целей тестирования мы собрали тестовую систему, состоящую из следующего набора комплектующих:


Память: 1024MB DDR2-533 SDRAM (OCZ PC2 4300, 2 x 512MB, 4-4-4-11);


В первую очередь в этой тестовой системе мы провели измерение температурного режима LGA775 процессоров Pentium 4 6XX и Pentium 4 5XX. В качестве процессоров линейки Pentium 4 5XX использовались CPU, в основе которых лежат ядра Prescott степпинга E0, то есть поддерживающие C1E и TM2. Pentium 6XX были представлены процессорами с ядром Prescott 2M степпинга N0, эти CPU поддерживали C1E, TM2 и EIST. Частоты испытуемых процессоров устанавливались в 2.8, 3.0, 3.2, 3.4, 3.6 ГГц, а для процессора на ядре Prescott со степпингом ядра E0 – и в 3.8 ГГц. Частота шины во всех случаях была номинальной, напряжение питания ядра – тоже. Во всех опытах использовался штатный боксовый LGA775 кулер. Показания температуры процессоров снимались с встроенного в ядро CPU датчика. Измерения температуры процессорных ядер мы выполняли в двух состояниях: в режиме ожидания (idle) и при максимальной загрузке CPU, создаваемой специальной утилитой S&M версии 0.3.2, являющейся на сегодняшний день лучшим инструментом для прогрева процессоров.
Помимо результатов измерений температур Pentium 4 "пятисотой" и "шестисотой" серий, на итоговые графики мы добавили и данные, полученные при испытании процессора Pentium 4 Extreme Edition 3.73 ГГц. Хотя этот процессор и основывается на том же самом ядре Prescott 2M степпинга N0, как и все Pentium 4 6XX, он не поддерживает технологии C1E, TM2 и EIST. Поэтому, его температурный режим и энергопотребление вызывает особый интерес.






Как видим, при максимальной нагрузке на процессоры Pentium 4 5XX и Pentium 4 6XX они прогреваются примерно до одинаковой температуры при равной тактовой частоте. То есть, увеличение кеш-памяти второго уровня не привело к какому сколько-нибудь заметному изменению температурной картины. Зато работа процессоров в состоянии покоя заслуживает определённого внимания. В первую очередь заметим, что вне зависимости от частоты Pentium 4 5XX и Pentium 4 6XX показывают совершенно одинаковую температуру. Это объясняется тем, что в состоянии бездействия эти процессоры, фактически, работают в "состоянии пониженного энергопотребления" на частоте 2.8 ГГц, независимо от их номинальной частоты. Например, Pentium 4 XE 3.73 ГГц, который технологии C1E, TM2 и EIST не поддерживает, в состоянии покоя прогревается гораздо сильнее. Это неудивительно: в этом состоянии, в отличие от процессоров Pentium 4 5XX и 6XX, он продолжает работать на своей штатной частоте.
Также, помимо температуры, мы оценили и энергопотребление процессоров с ядрами Prescott и Prescott 2M. Для этого при помощи токовых клещей мы измерили ток, проходящий по 12-вольтовой цепи, по которой осуществляется питание процессора. То есть, приводимые ниже данные не учитывают КПД конвертера питания процессора, поэтому, по сравнению с реальным энергопотреблением процессоров они слегка завышены (примерно на 10%).






Качественно картина получается такая же, как и при измерении температуры. Однако мы должны отметить, что новые процессоры на базе ядра Prescott 2M, несмотря на увеличившееся количество транзисторов, обладают более низким энергопотреблением, чем процессоры на базе обычного ядра Prescott. Таким образом, резервы для наращивания тактовых частот процессоров Pentium 4 6XX ещё есть.

Разгон

Чтобы оценить эти резервы, а также понять, насколько новое процессорное ядро Prescott 2M степпинга N0 может понравиться энтузиастам-оверклокерам, мы решили провести испытания CPU Intel Pentium 4 660 со штатной частотой 3.6 ГГц на разгон. Тестовая система, используемая в этом случае, была составлена из следующего набора комплектующих:

Процессор: Intel Pentium 4 660 (3.6 ГГц);
Материнская плата: ASUS P5AD2-E Premium (LGA775, i925XE Express);
Память: 1024MB DDR2-667 SDRAM (Corsair XMS2-5300, 2 x 512MB, 4-4-4-12).
Графическая карта: PowerColor RADEON X800 XT (PCI-E x16);
Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).

Для охлаждения Pentium 4 660 во время наших разгонных экспериментов мы воспользовались самым производительным воздушным кулером для LGA775 процессоров, имеющимся в нашей лаборатории: Zalman CNPS7700Cu. Напряжение питания процессора при разгоне мы не увеличивали: на старшие модели CPU с ядром Prescott 2M, как и на их предшественников, данный трюк не производит практически никакого впечатления. Разгон мы выполняли путём повышения частоты FSB свыше штатных 200 МГц, частоты шины PCI Express и PCI фиксировались при этом на номинальных значениях 100 и 33 МГц.
Перед тем, как перейти непосредственно к результатам нашего разгона, напомним, что максимальная частота, которую нам удалось достичь при оверклокинге Pentium 4 570, основанного на ядре Prescott степпинга E0, составила 4.3 ГГц. Подобных успехов от Pentium 4 660, ядро которого имеет большее число транзисторов, мы не ожидали. Однако, практика показала, что зря.
Ниже мы приводим скриншот CPU-Z, являющийся отражением наших успехов:


То есть, Pentium 4 660 со штатной частотой 3.6 ГГц разогнался до 4.33 ГГц. Это – достаточно хороший результат, подтверждающий значительный оверклокерский потенциал ядра Prescott 2M. Таким образом, младшие процессоры линейки Pentium 4 6XX могут стать весьма интересными объектами для разгона.
Мы же в очередной раз должны констатировать, что решение Intel не выпускать по 90 нм технологии процессоры с частотами 4 ГГц и более, обусловлено не достижением технологического предела, а скорее маркетинговыми причинами. Как мы вновь убеждаемся, существующие ядра Prescott и Prescott 2M степпингов E0 и N0 могут легко работать на частотах свыше 4 ГГц.

Как мы тестировали

Целью данного тестирования являлось определение уровня производительности, обеспечиваемого новыми процессорами серии Intel Pentium 4 6XX и процессором Intel Pentium 4 Extreme Edition 3.73 ГГц, а также сопоставление этого уровня с быстродействием предшествующих и конкурирующих CPU. Для наших тестовых испытаний мы выбрали две старших модели "шестисотой" серии, Pentium 4 660 со штатной частотой 3.6 ГГц и Pentium 4 650 с частотой 3.4 ГГц.

В составе тестовых систем мы использовали следующее оборудование:

Процессоры:

AMD Athlon 64 FX-55 (Socket 939, 1024KB L2, 2.6GHz);
AMD Athlon 64 4000+ (Socket 939, 1024KB L2, 2.4GHz);
AMD Athlon 64 3800+ (Socket 939, 512KB L2, 2.4GHz);
AMD Athlon 64 3500+ (Socket 939, 512KB L2, 2.2GHz);
Intel Pentium 4 570 (LGA775, 1024KB L2, 3.8 GHz);
Intel Pentium 4 560 (LGA775, 1024KB L2, 3.6 GHz);
Intel Pentium 4 550 (LGA775, 1024KB L2, 3.4 GHz);
Intel Pentium 4 660 (LGA775, 2048KB L2, 3.6 GHz);
Intel Pentium 4 650 (LGA775, 2048KB L2, 3.4 GHz);
Intel Pentium 4 Extreme Edition 3.46GHz (LGA775, 2048KB L3, FSB 1066MHz);
Intel Pentium 4 Extreme Edition 3.73GHz (LGA775, 2048KB L2, FSB 1066MHz);


Материнские платы:

EPoX 9NPA Ultra (Socket 939, NVIDIA nForce4 Ultra);
Intel Desktop Board D925XECV2 (LGA775, i925XE Express).


Память:

1024MB DDR400 SDRAM (Corsair CMX512-3200XLPRO, 2 x 512MB, 2-2-2-10);
1024MB DDR2-533 SDRAM (OCZ PC2 4300, 2 x 512MB, 4-4-4-11).


Графическая карта: PowerColor RADEON X800 XT (PCI-E x16).
Дисковая подсистема: Maxtor MaXLine III 250GB (SATA150).

Тестирование выполнялось в операционной системе MS Windows XP SP2 с установленным пакетом DirectX 9.0c. Тестовые системы настраивались на максимальную производительность. Заметим, что в Athlon 64 мы увеличивали тайминг Cycle Time (Tras) до 10, поскольку, как показывает практика, в таком режиме контроллер памяти Athlon 64 работает более эффективно, нежели при установке этой задержки в минимально возможное значение 5.
В рамках данного тестирования мы существенно расширили набор тестовых приложений. Произошло это благодаря тому, что мы решили задействовать набор стандартных скриптов PC WorldBench 5, широко используемый в индустрии для бенчмаркинга.

Производительность

FutureMark PCMark04, 3DMark2001 SE и 3DMark05

В первую очередь мы решили привести результаты, полученные нами в популярных синтетических тестах компании FutureMark.









Тест PCMark04 активно использует технологию Hyper-Threading, благодаря чему процессоры производства компании Intel показывают лучшие результаты. Что же касается соотношения сил между различными линейками процессоров Pentium 4, то процессоры "шестисотой" серии с увеличенной до 2 Мбайт кеш-памятью лишь незначительно превосходят CPU линейки Pentium 4 5XX. Зато процессор Pentium 4 Extreme Edition 3.73 ГГц, благодаря значительному росту тактовой частоты и более новому процессорному ядру, ощутимо обгоняет своего предшественника, Pentium 4 Extreme Edition 3.46 ГГц, в основе которого использовалось ядро Gallatin.
Достаточно интересные результаты получаются и в подтесте, измеряющем скорость работы подсистемы памяти. Увеличение L2 кеша в процессорах Pentium 4 6XX увеличило скорость их работы с данными, благодаря чему этим CPU в данном бенчмарке удаётся теперь выступать на равных с процессорами Athlon 64, сильной стороной которых является интегрированный контроллер памяти. То есть, увеличенная до 2 Мбайт кеш-память второго уровня нивелирует высокие задержки DDR2 SDRAM, используемой в составе современных Pentium 4 систем.


Старый тест 3DMark2001 SE никак не теряет своей популярности, однако на сегодня он уже гораздо сильнее показывает скорость центральных процессоров, нежели современных видеокарт. Раньше в этом тесте неизменно верхние места занимали CPU семейства Athlon 64, однако теперь ситуация несколько изменилась. Увеличение в новых процессорах Pentium 4 с ядром Prescott 2M кеш-памяти второго уровня позволило этим CPU несколько нарастить свои показатели в данном тесте. Благодаря этому Pentium 4 660 удалось обогнать Athlon 64 3500+, а Pentium 4 Extreme Edition 3.73 ГГц выступает на равных с Athlon 64 3800+. Конечно, назвать такие результаты успехом для Intel явно нельзя, однако этот факт является явным предвестником того, что в игровых приложениях увеличенный кеш процессоров с ядром Prescott 2M должен сказаться положительным образом.






Результаты, полученные в самом новом тестовом пакете от Futuremark, 3DMark05 также говорят нам о том, что увеличенная кеш-память новых процессоров Pentium 4 даёт определённый эффект при работе с игровой 3D графикой. Однако индекс производительности CPU из этого теста не позволяет Pentium 4 660 опередить Pentium 4 570, работающий на 200 МГц более высокой тактовой частоте. Впрочем, это не мешает при этом выставить на первое место по данному индексу процессор Pentium 4 Extreme Edition 3.73 ГГц, которому удаётся обогнать даже Athlon 64 FX-55.

Игровые приложения















С самого момента появления процессоров Athlon 64, CPU этого типа наголову побеждают своих конкурентов семейства Pentium 4 в игровых приложениях. Появление процессоров Pentium 4 6XX и Pentium 4 Extreme Edition 3.73 ГГц эту ситуацию не изменило. Несмотря на то, что увеличение кеш-памяти второго уровня привело к росту скорости Pentium 4 в играх примерно на 3-6%, Athlon 64 в 3D играх вновь оказываются значительно более быстрыми CPU. Положение не спасает и новый Pentium 4 Extreme Edition, уступающий в приложениях этого типа по скорости даже Athlon 64 3500+.

Офисные приложения


При работе в Microsoft Office скорость процессора оказывает небольшое влияние на производительность системы в целом.


Зато рендеринг веб-страниц в одном из самых популярных броузеров Mozilla (движок которого используется и в ещё более распространенном FireFox) на процессорах семейства Athlon 64 выполняется значительно быстрее, чем на конкурирующих CPU от Intel.


Впрочем, если во время работы с броузером в фоновом режиме выполняется какой-либо другой процесс, сильно загружающий ресурсы компьютера, результаты Pentium 4 оказываются несколько лучше, благодаря поддержке этими процессорами технологии Hyper-Threading.


Как видим, производительность ещё одного распространённого приложения, Nero, предназначенного для записи CD и DVD дисков также мало зависит от производительности центрального процессора.

Сжатие данных






Скорость работы приложений для сжатия данных напрямую зависит от тех алгоритмов, которые используются в этих приложениях. Как видим, WinZip несколько лучше оптимизирован для процессоров Intel, зато в WinRAR чудеса быстродействия показывают CPU семейства Athlon 64.
Кстати, по данным WinRAR, очень чутко реагирующего на любые изменения в архитектуре системы, увеличение кеш-памяти второго уровня даёт очень небольшой эффект: всего лишь порядка 3%.

Кодирование аудио и видео















В задачах кодирования видео традиционно выигрывают процессоры семейства Pentium 4. Приложения, используемые для сжатия видео контента, хорошо оптимизированы для NetBurst архитектуры и зачатую используют набор инструкций SSE3, который реально может увеличить производительность в программах этого рода. Поэтому, мы вновь вынуждены констатировать тот факт, что равных Pentium 4 при кодировании видео нет.
Что же касается кодирования аудио в формат mp3, то с этим процессом CPU от Intel и AMD справляются примерно с одинаковой скоростью.
Хочется отметить, что в задачах кодирования аудио и видео контента процессоры Pentium 4 6XX оказываются лишь немного быстрее, чем Pentium 4 5XX. Двукратное увеличение объёма кеш-памяти второго уровня в приложениях такого рода даёт прирост производительности менее 1%.

Редактирование изображений






Соотношение производительности между процессорами и в ACDSee, обладающем простейшими пакетными функциями для редактирования изображений, и в полновесном Adobe Photoshop примерно одинакова. Работа с изображениями на процессорах семейства Athlon 64 выполняется несколько быстрее, нежели на конкурирующих продуктах от Intel.
При этом мы вновь должны констатировать, что CPU семейства Pentium 4 6XX в приложениях этого типа опережают процессоры серии Pentium 4 5XX лишь на десятые доли процента. То есть, и в графических редакторах эффект от увеличения кеш-памяти в процессорах с ядром Prescott 2M проявляется весьма слабо.

Редактирование видео

Процессоры семейства Athlon 64 сильны именно благодаря своей вычислительной мощности. Поэтому их победа в специализированных пакетах для математических расчётов вполне закономерна.
Интересно же в этих тестах другое. Во-первых, Mathematica оказывается одним из немногих приложений, в котором размер кеш-памяти второго уровня имеет большое значение. Так преимущество процессоров с ядром Prescott 2M над процессорами с ядром Prescott, работающими на одинаковой тактовой частоте, оказывается порядка 7%, а это чуть ли не максимальное значение, наблюдаемое нами в данном тестировании. Во-вторых, Matematica очень лояльно отнеслась к процессору Pentium 4 Extreme Edition 3.46 ГГц, основанному на устаревшем 130 нм ядре Gallatin. Как видим, этот процессор, несмотря на свою относительно невысокую тактовую частоту, является в данном приложении лидером среди всех CPU от Intel.
Что же касается пакета MATLAB, то наблюдаемая в нём картина вполне привычна, поэтому полученные здесь результаты вряд ли нуждаются в дополнительных комментариях.
Производительность при финальном рендеринге в Lightwave очень сильно зависит от типа стоящегося изображения. В зависимости от этого в лидерах могут быть как процессоры Athlon 64, так и Pentium 4.
При этом заметим, что в любых задачах 3D рендеринга объём кеш-памяти второго уровня оказывает небольшое влияние на конечный результат. Этот относится как к процессорам Pentium 4 6XX, так и к Athlon 64 с мегабайтным L2 кешем.
Кроме того, обратите внимание на то, что в Lightwave процессоры Pentium 4 6XX проигрывают Pentium 4 5XX, работающим на аналогичной частоте. Скорее всего, этот факт объясняется именно большей медлительностью кеш-памяти второго уровня, реализованной в ядре Prescott 2M.

Выводы

В рамках данного обзора мы познакомились с семейством новых процессоров Intel, использующих в своей основе ядро Prescott 2M. Хотя на первый взгляд основным преимуществом этого ядра является увеличенный до 2 Мбайт L2 кеш, на деле процессоры на базе этого ядра содержат гораздо больше интересных нововведений, чем это кажется на первый взгляд. CPU линейки Pentium 4 6XX, являющиеся основными носителями ядра Prescott 2M на сегодняшний день, обладают не просто большей кеш-памятью, чем их предшественники, они снабжены рядом новых технологий, расширяющих их функциональность.
Тут в первую очередь следует отметить, что Pentium 4 6XX стали первыми массовыми CPU от Intel для настольных компьютеров, поддерживающими 64-битные расширения архитектуры x86. В свете скорого появления 64-битных пользовательских операционных систем, и в первую очередь Windows XP Professional x64 Edition, Intel поддержал инициативу AMD по внедрению архитектуры x86-64 и снабдил свои CPU соответствующими расширениями. Таким образом, теперь поддержка x86-64 прекращает быть прерогативой исключительно процессоров Athlon 64: конкурирующие продукты от Intel, процессоры Pentium 4 6XX теперь также имеют возможность работать с 64-битными приложениями и поддерживать более 4 Гбайт оперативной памяти.
Аналогичные 64-битные расширения архитектуры x86 получили и процессоры Pentium 4 Extreme Edition. Новая модель в этом семействе, Pentium 4 Extreme Edition 3.73 ГГц, которая основывается на новом ядре Prescott 2M, также поддерживает x86-64.
Нельзя обойти вниманием и тот факт, что новые процессоры Pentium 4 6XX получили в свое распоряжение набор технологий Demand Based Switching, благодаря которым снижается тепловыделение и энергопотребление этих процессоров в те моменты, когда от CPU не требуется работа "на пике своих возможностей". В процессорах семейства Pentium 4 6XX реализованы технологии C1E, TM2 и EIST и благодаря этому набору CPU данного типа большинство времени работают на частоте 2.8 ГГц при пониженном напряжении питания, разгоняясь до номинальной частоты лишь в те моменты, когда от системы необходима максимальная производительность.
Именно такой набор новых возможностей, реализованных в процессорах Pentium 4 6XX, позволил Intel установить на них достаточно высокие цены по сравнению с их предшественниками, Pentium 4 5XX с обычным ядром Prescott. Вот выдержка из нового официального прайс-листа (цены процессоров за 1 тыс. шт.):

Intel Pentium 4 Extreme Edition 3.73 GHz (3.73 GHz, 1066 MHz FSB, 2 MB L2) - $999;
Intel Pentium 4 660 (3.60 GHz, 800 MHz FSB, 2 MB L2) - $605;
Intel Pentium 4 650 (3.40 GHz, 800 MHz FSB, 2 MB L2) - $401;
Intel Pentium 4 640 (3.20 GHz, 800 MHz FSB, 2 MB L2) - $273;
Intel Pentium 4 630 (3.00 GHz, 800 MHz FSB, 2 MB L2) - $224.

Что же касается традиционного восприятия новых CPU, а именно их производительности, то нельзя сказать, что появление Pentium 4 "шестисотой серии" как-то повлияло на расстановку сил на процессорном рынке. Пока тактовая частота этих CPU уступает тактовой частоте старших процессоров Pentium 4 5XX, а увеличенный кеш второго уровня лишь незначительно позволяет поднять быстродействие. На графике ниже мы приводим относительную производительность Pentium 4 660 по сравнению с производительностью аналогичного по тактовой частоте процессора Pentium 4 560, основанного на обычном ядре Prescott с кеш-памятью второго уровня объёмом 1 Мбайт:


Как видим, в большинстве случаев эффект от увеличенной в два раза кеш-памяти второго уровня не превосходит 5%. Именно поэтому на сегодняшний день Pentium 4 570 с тактовой частотой 3.8 ГГц и кеш-памятью второго уровня 1 Мбайт следует считать более производительным CPU, нежели Pentium 4 660 с тактовой частотой 3.6 ГГц и 2-мегабайтной кеш-памятью. Сильные же стороны Pentium 4 6XX заключаются в первую очередь в поддержке EM64T и в наборе технологий C1E, TM2 и EIST.
Что же касается процессора Pentium 4 Extreme Edition 3.73 ГГц, то он приходит на смену Pentium 4 Extreme Edition 3.46 ГГц, основанному на ядре Gallatin. Смена ядра, перенос 2 Мбайт кеша с третьего уровня на второй и ощутимое увеличение тактовой частоты возымели своё дело и в целом, новый Extreme Edition стал побыстрее старого:


Однако данная картина наблюдается далеко не всегда и, более того, в игровых приложениях, на работу в которых в первую очередь и нацелены процессоры серии Extreme Edition, новый Pentium 4 Extreme Edition 3.73 ГГц не обгоняет своего предшественника. Все-таки 130 нм ядро Northwood и его производная Gallatin, использовавшаяся в Pentium 4 Extreme Edition 3.46 ГГц, в игровых приложениях работает более эффективно, нежели любой из Prescott.
Впрочем, вновь не следует забывать о том, что неоспоримым преимуществом Pentium 4 Extreme Edition 3.73 ГГц является поддержка 64-битных расширений EM64T.
Что же касается общей расстановки сил "AMD против Intel", то теперь мы можем констатировать, что по своим возможностям процессоры на ядре Prescott 2M уровнялись с процессорами Athlon 64. Так, взамен 64-битных расширений AMD64 у Athlon 64, в процессорах Pentium 4 6XX появились расширения EM64T. Аналогом технологии Cool"n"Quiet от AMD стала технология EIST от Intel, а кроме того процессоры Intel получили поддержку NX-бита (в терминах Intel XD-бита).
Производительность же старших моделей процессоров от Intel при этом пока всё ещё уступает скорости старших процессоров Athlon 64. Хотя, Pentium 4 продолжают лидировать в традиционных для себя областях, как то кодирование видео данных или финальный рендеринг, в большинстве приложений, а в первую очередь в играх, CPU от AMD показывают более высокое быстродействие.


В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...