Реферат: Статическая память. Статическая память

Общие сведения. Статическая память (Static Random Access Memory – SRAM) способна сколь угодно долго хранить данные в отсутствие обращений (при наличии питающего напряжения), т.е. в статическом режиме. Ячейки статической памяти строятся на элементах с двумя устойчивыми состояниями (на бистабильных ячейках или триггерах). По сравнению с динамическими емкостными элементами памяти они проще в управлении и не требуют регенерации, однако являются более сложными в схемном отношении и занимают больше места на кристалле. Быстродействие и энергопотребление статической памяти определяются технологией изготовления и схемотехникой запоминающих ячеек. Самая экономичная КМОП-память (CMOS Memory) пригодна для длительного хранения данных при питании от маломощной батареи. Она применяется в памяти конфигурации персональных компьютеров. Время доступа КМОП-памяти составляет более 100 нс. Самая быстродействующая статическая память имеет время доступа в несколько наносекунд (и даже десятых долей наносекунды). Такая память способна функционировать на частоте системной шины совместно с процессором, не требуя от него тактов ожидания.

Типовой объем памяти современных микросхем SRAM достигает 1 Мбит и более. Существуют три разновидности микросхем статической памяти: Async SRAM, Sync Burst SRAM и Pipelined Burst SRAM. Относительно высокая удельная стоимость хранения данных при низкой плотности упаковки не позволяет использовать SRAM в качестве основной памяти компьютеров.

Во избежание увеличения стоимости в компьютерах устанавливается небольшой объем высокоскоростной статической памяти SRAM, которая используется в качестве кэша. Кэш-память способна работать на тактовых частотах, близких или равных тактовым частотам процессора. Поэтому она непосредственно используется процессором при чтении и записи, что позволяет сократить количество его простоев и увеличить быстродействие компьютера в целом. Контроллер кэша предугадывает потребности процессора в данных и предварительно загружает необходимые данные в высокоскоростную кэш-память. При выдаче процессором адреса памяти данные передаются не из медленной оперативной памяти, а из кэша.

Для сокращения времени ожидания и простоев процессора при считывании данных из низкоскоростной оперативной памяти в современных компьютерах предусмотрено до трех уровней кэша. При этом кэш-память первого и второго уровней может располагаться на одном кристалле с процессором. Использование синхронной работы с процессором и конвейерного пакетного режима сопутствует повышению быстродействия и эффективности кэш-памяти. Возможности и эффективность кэш-памяти предопределяет контроллер, который располагается в микросхемах (обычно North Bridge) системной логики или на плате процессора.

Таким образом, к основным особенностям статических ОЗУ следует отнести:

  • способность при включенном компьютере сколь угодно долго хранить данные (информацию) в отсутствие обращений. Такая способность обеспечивается бистабильными ячейками памяти с двумя устойчивыми состояниями, которые выполняются на биполярных или КМОП-структурах;
  • сравнительно высокое быстродействие микросхем на биполярных структурах (время доступа составляет единицы наносекунд), позволяющее работать синхронно с процессорами на частотах выше 500 МГц;
  • низкое энергопотребление КМОП-микросхем, обеспечивающее длительное хранение параметров системы ввода-вывода (BIOS);
  • сравнительно большие габариты микросхем и высокая стоимость , что связано с большим числом транзисторов и кластеризованным их размещением (используются кластеры из шести транзисторов);
  • типовой объем памяти микросхем SRAM достигает 1 Мбит и более;
  • основная область применения – кэш-память и память конфигурации компьютера.

В радиоаппаратуре часто требуется хранение временной информации, значение которой не важно при включении устройства. Такую память можно было бы построить на микросхемах или -памяти, но, к сожалению, эти микросхемы дороги, обладают малым количеством перезаписей и чрезвычайно низким быстродействием при считывании и особенно записи информации. Для хранения временной информации можно воспользоваться . Так как запоминаемые слова не нужны одновременно, то можно воспользоваться механизмом адресации, который применяется в .

Схемы, в которых в качестве запоминающей ячейки используется называются статическим оперативным запоминающим устройством - статическим ОЗУ (RAM - random access memory - память с произвольным доступом), т.к. информация в нем сохраняется все время, пока к микросхеме ОЗУ подключено питание. В отличие от статической ОЗУ в микросхемах постоянно требуется регенерировать их содержимое, иначе информация будет испорчена.

В микросхемах ОЗУ присутствуют две операции: операция записи и операция чтения. Для записи и чтения информации можно использовать различные шины данных (как это делается в сигнальных процессорах), но чаще используется одна и та же шина данных. Это позволяет экономить внешние выводы микросхем, подключаемых к этой шине и легко осуществлять коммутацию сигналов между различными устройствами.

Статического ОЗУ приведена на рисунке 1. Вход и выход ОЗУ в этой схеме объединены при помощи . Естественно, что схемы реальных ОЗУ будутотличаться от приведенной на этом рисунке. Тем не менее, приведенная схема позволяет понять как работает реальное ОЗУ. Условно-графическое обозначение ОЗУ на принципиальных схемах приведено на рисунке 2.


Рисунок 1. Структурная схема ОЗУ (RAM)

Рисунок 2. Условно-графическое обозначение ОЗУ (RAM)

Сигнал записи WR позволяет записать логические уровни, присутствующие на информационных входах во внутреннюю ячейку ОЗУ (RAM). Сигнал чтения RD позволяет выдать содержимое внутренней ячейки памяти на информационные выходы микросхемы. В приведенной на рисунке 1 схеме невозможно одновременно производить операцию записи и чтения, но обычно это и не нужно.

Конкретная ячейка ОЗУ выбирается при помощи двоичного кода - адреса ячейки. Объем памяти ОЗУ (RAM) зависит от количества ячеек, содержащихся в ней или, что то же самое, от количества адресных проводов. Количество ячеек в ОЗУ можно определить по количеству адресных проводов, возводя 2 в степень, равную количеству адресных выводов в микросхеме:

Вывод выбора кристалла CS микросхем ОЗУ позволяет объединять несколько микросхем для увеличения объема памяти ОЗУ. Такая схема приведена на рисунке 3.



Рисунок 3. Схема ОЗУ, построенного на нескольких микросхемах памяти

Статические ОЗУ требуют для своего построения большой площади кристалла, поэтому их ёмкость относительно невелика. Статические ОЗУ применяются для построения микроконтроллерных схем из-за простоты построения принципиальной схемы и возможности работать на сколь угодно низких частотах, вплоть до постоянного тока. Кроме того статические ОЗУ применяются для построения КЭШ-памяти в универсальных компьютерах из-за высокого быстродействия статического ОЗУ.

Временные диаграммы чтения из статического ОЗУ совпадают с временными Временные диаграммы записи в статическое ОЗУ и чтения из него приведены на рисунке 4.



Рисунок 4. Временная диаграмма обращения к ОЗУ принятая для схем, совместимых со стандартом фирмы INTEL

На рисунке 4 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы ОЗУ. На этом рисунке RD - это сигнал чтения; WR - сигнал записи; A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние); DI - входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO - выходная информация, считанная из ячейки ОЗУ, расположенной по адресу A2.



Рисунок 5. Временная диаграмма обращения к ОЗУ принятая для схем, совместимых со стандартом фирмы MOTOROLA

На рисунке 5 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке R/W - это сигнал выбора операции записи или чтения; DS - сигнал стробирования данных; A - сигналы выбора адреса ячейки (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода как в единичное, так и в нулевое состояние); DI - входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO - выходная информация, считанная из ячейки ОЗУ, расположенной по адресу A2.

Литература:

Вместе со статьей "Статические оперативные запоминающие устройства - ОЗУ (RAM)" читают:

Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти. Поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Это открывает целый ряд возможностей. Например, программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение циклов и подпрограмм). Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаны методы трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

Принцип программного управления. Из него следует, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Выборка программы из памяти осуществляется с помощью счетчика команд . Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды .

А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти.

Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются команды условного или безусловного переходов , которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду . Выборка команд из памяти прекращается после достижения и выполнения команды “стоп” .

Таким образом, процессор исполняет программу автоматически, без вмешательства человека .

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен.

Компьютеры, построенные на этих принципах, относятся к типу фон-неймановских . Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления , т.е. они могут работать без “счетчика команд”, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам не обязательно давать ей имя . Такие компьютеры называются не-фон-неймановскими .

14. АРХИТЕКТУРА И СТРУКТУРА.

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.



Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

15. ОТЛИЧИТЕЛЬНЫЕ ОСОБЕННОСТИ КАЖДОЙ ИЗ НИХ.

· Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер . К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной . Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью. Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Периферийные устройства (принтер и др.) подключаются к аппаратуре компьютера через специальные контроллеры - устройства управления периферийными устройствами. Контроллер - устройство, которое связывает периферийное оборудование или каналы связи с центральным процессором, освобождая процессор от непосредственного управления функционированием данного оборудования.

Многопроцессорная архитектура . Наличие в компьютере нескольких процессоров означает, что параллельно может быть организовано много потоков данных и много потоков команд . Таким образом, параллельно могут выполняться несколько фрагментов одной задачи.

Многомашинная вычислительная система . Здесь несколько процессоров, входящих в вычислительную систему, не имеют общей оперативной памяти , а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы может быть получен только при решении задач, имеющих очень специальную структуру: она должна разбиваться на столько слабо связанных подзадач, сколько компьютеров в системе.

Преимущество в быстродействии многопроцессорных и многомашинных вычислительных систем перед однопроцессорными очевидно.

Архитектура с параллельными процессорами . Здесь несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе - то есть по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и такие архитектурные решения, которые радикально отличаются от рассмотренных выше.

16. ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР. ДВЕ ОСНОВНЫЕ РАЗНОВИДНОСТИ ПАМЯТИ КОМПЬЮТЕРА.

Центральный процессор в общем случае содержит в себе:

  • арифметико-логическое устройство;
  • шины данных и шины адресов;
  • регистры;
  • счетчики команд;
  • кэш - очень быструю память малого объема (от 8 до 512 Кбайт);
  • математический сопроцессор чисел с плавающей точкой.

Современные процессоры выполняются в виде микропроцессоров . Физически микропроцессор представляет собой интегральную схему - тонкую пластинку кристаллического кремния прямоугольной формы площадью всего несколько квадратных миллиметров, на которой размещены схемы, реализующие все функции процессора. Кристалл-пластинка обычно помещается в пластмассовый или керамический плоский корпус и соединяется золотыми проводками с металлическими штырьками, чтобы его можно было присоединить к системной плате компьютера.

В вычислительной системе может быть несколько параллельно работающих процессоров; такие системы называются многопроцессорными.

Как устроена память

Память компьютера построена из двоичных запоминающих элементов- битов , объединенных в группы по 8 битов, которые называются байтами. (Единицы измерения памяти совпадают с единицами измерения информации). Все байты пронумерованы. Номер байта называется его адресом.

Байты могут объединяться в ячейки, которые называются также словами. Для каждого компьютера характерна определенная длина слова - два, четыре или восемь байтов. Это не исключает использования ячеек памяти другой длины (например, полуслово, двойное слово). Как правило, в одном машинном слове может быть представлено либо одно целое число, либо одна команда. Однако, допускаются переменные форматы представления информации. Разбиение памяти на слова для четырехбайтовых компьютеров представлено в таблице:

Байт 0 Байт 1 Байт 2 Байт 3 Байт 4 Байт 5 Байт 6 Байт 7
ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО ПОЛУСЛОВО
СЛОВО СЛОВО
ДВОЙНОЕ СЛОВО

Широко используются и более крупные производные единицы объема памяти: Килобайт, Мегабайт, Гигабайт , а также, в последнее время, Терабайт и Петабайт .

Современные компьютеры имеют много разнообразных запоминающих устройств, которые сильно отличаются между собой по назначению, временным характеристикам, объёму хранимой информации и стоимости хранения одинакового объёма информации. Различают два основных вида памяти - внутреннюю и внешнюю.

17 . ОСНОВНЫЕ КОМПОНЕНТЫ ВНУТРЕННЕЙ ПАМЯТИ. СТАТИЧЕСКАЯ И ДИНАМИЧЕСКАЯ ПАМЯТЬ.

В состав внутренней памяти входят оперативная память, кэш-память и специальная память.

1. Оперативная память

Оперативная память используется только для временного хранения данных и программ , так как, когда машина выключается, все, что находилось в ОЗУ, пропадает . Доступ к элементам оперативной памяти прямой - это означает, что каждый байт памяти имеет свой индивидуальный адрес.

Объем ОЗУ обычно составляет от 32 до 512 Мбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.

Обычно ОЗУ исполняется из интегральных микросхем памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за токов утечки такие конденсаторы быстро разряжаются, и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс называется регенерацией памяти (Refresh Memory). Микросхемы SDRAM имеют ёмкость 16 - 256 Мбит и более. Они устанавливаются в корпуса и собираются в модули памяти .

Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-line Memory Module - модуль памяти с двухрядным расположением микросхем). В компьютерных системах на самых современных процессорах используются высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM .

Модули памяти характеризуются такими параметрами, как объем -(16, 32, 64, 128, 256 или 512 Мбайт), число микросхем, паспортная частота (100 или 133 МГц), время доступа к данным (6 или 7 наносекунд) и число контактов (72, 168 или 184). В 2001 г. начинается выпуск модулей памяти на 1 Гбайт и опытных образцов модулей на 2 Гбайта . В 2009 г. модули 2 гб распространены. Начала производства модулей по 4 гб.

2. Кэш-память

Кэш-памятью управляет специальное устройство - контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания" , так и "промахи" . В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM (SDRAM). Современные микропроцессоры имеют встроенную кэш-память , так называемый кэш первого уровня размером 8, 16 или 32 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512 Кбайт и выше.

3. Специальная память

К устройствам специальной памяти относятся постоянная память (ROM), перепрограммируемая постоянная память (Flash Memory), память CMOS RAM , питаемая от батарейки, видеопамять и некоторые другие виды памяти.

Прежде всего в постоянную память записывают программу управления работой самого процессора. В ПЗУ находятся программы управления дисплеем, клавиатурой, принтером, внешней памятью, программы запуска и остановки компьютера, тестирования устройств.

Важнейшая микросхема постоянной или Flash-памяти - модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой строны - важный модуль любой операционной системы.

BIOS (Basic Input/Output System - базовая система ввода-вывода) - совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память.

Содержимое CMOS изменяется специальной программой Setup , находящейся в BIOS (англ. Set-up - устанавливать, читается "сетап").

Для хранения графической информации используется видеопамять .

Существует много различных видов оперативной памяти, но их все можно подразделить на две основные подгруппы - статическая память (Static RAM) и динамическая память (Dynamic RAM).

Эти два типа памяти отличаются, прежде всего, различной в корне технологической реализацией - SRAM будет хранить записанные данные до тех пор, пока не запишут новые или не отключат питание, а DRAM может хранить данные лишь небольшое время, после которого данные нужно восстановить (регенерировать), иначе они будут потеряны.

Рассмотрим достоинства и недостатки SRAM и DRAM:

1. Память типа DRAM, в силу своей технологии, имеет гораздо большую плотность размещения данных, чем SRAM.

2. DRAM гораздо дешевле SRAM,

3. но последняя производительнее и надежнее, поскольку всегда готова к считыванию.

СТАТИЧЕСКАЯ RAM

В современных компьютерах SRAM используется как кэш второго уровня и имеет сравнительно небольшой объем (обычно 128...1024 Кб). В кэше она используется именно потому, что к нему предъявляются очень серьезные требования в плане надежности и производительности. Основную же память компьютера составляют микросхемы динамической памяти.

Статическую память делят на синхронную и асинхронную. Асинхронная память уже не используется в персональных компьютерах, она была вытеснена синхронной еще со времен 486-ых компьютеров.

Применение статической памяти не ограничивается кэш-памятью в персональных компьютерах. Серверы, маршрутизаторы, глобальные сети, RAID-массивы, коммутаторы - вот устройства, где необходима высокоскоростная SRAM.

SRAM - очень модифицируемая технология - существует множество ее типов, которые отличаются электрическими и архитектурными особенностями. В обычной синхронной SRAM происходит небольшая задержка, когда память переходит из режима чтения в режим записи.

Поэтому в 1997 г. несколько компаний представили свои технологии статической RAM без такой задержки. Это технологии ZBT (Zero-Bus Turnaround - нуль-переключение шины) SRAM от IDT, и похожая NoBL (No Bus Latency - шина без задержек). ДИНАМИЧЕСКАЯ RAM(вся память за исключением сегмента данных-64кб,стекопамяти-16кб,собственным телом программ)

Память типа DRAM гораздо шире распространена в вычислительной технике благодаря двум своим достоинствам перед SRAM - дешевизне и плотности хранения данных. Эти две характеристики динамической памяти компенсируют в некоторой степени ее недостатки - невысокое быстродействие и необходимость в постоянной регенерации данных.

Сейчас существуют около 25-ти разновидностей DRAM, так как производители и разработчики памяти пытаются угнаться за прогрессом в области центральных процессоров.

основные типы динамической памяти - от старых Conventional и FPM DRAM до еще не воплощенных в жизнь QDR, DDR SDRAM, RDRAM.

Оперативная память имеет 3 раздела:

  • 640 кб. DOS – осн. ОЗУ
  • 1мб основные модули Windows – верхняя ОЗУ
  • оставшиеся модули – расширенная ОЗУ

18. МОДУЛЬ ПАМЯТИ DIMM. ДРУГИЕ ТИПЫ МОДУЛЕЙ ПАМЯТИ.

Оперативная память компьютера относится к одному из важнейших элементов компьютера, определяющих производительность и функциональные возможности всей системы. Оперативная память представлена определенным количеством микросхем ОЗУ на материнской плате. Если сравнительно недавно микросхемы ОЗУ подключались через специальные панельки - разъемы, позволявшие менять отдельные микросхемы без пайки, то в настоящее время архитектура компьютера предусматривает их размещение на небольших платах-модулях. Такие модули памяти устанавливаются в специальные разъемы-слоты на материнской плате. Одним из вариантов такого решения явились SIMM-модули (SIMM - single in-line memory modules).

Миниатюрные SIMM-модули, или просто SIMM, представляют собой блоки оперативной памяти разной емкости. Широкое распространение нашли SIMM на 4, 8, 16, 32 и даже 64 Мбайт.

SIMM бывают двух разных типов: на 30 pin и 72 pin, где pin ("пин") означает число контактов подключения к специализированному разъему ОЗУ на материнской плате. При этом 30 pin и 72 pin SIMM - не взаимозаменяемые элементы.

Внешний вид модуля DIMM

Модули типа DIMM наиболее распространены в виде 168-контактных модулей, устанавливаемых в разъём вертикально и фиксируемых защёлками. В портативных устройствах широко применяются SO DIMM - разновидность DIMM малого размера (англ. SO - small outline), они предназначены в первую очередь для портативных компьютеров.

Внешний вид модуля RIMM

Модули типа RIMM менее распространены, в таких модулях выпускается память типа Direct RDRAM. Они представлены 168/184-контактными прямоугольными платами, которые обязательно должны устанавливаться только в парах, а пустые разъёмы на материнской плате занимаются специальными заглушками. Это связано с особенностями конструкции таких модулей.

19. ВНЕШНЯЯ ПАМЯТЬ. РАЗНОВИДНОСТИ УСТРОЙСТВ ВНЕШНЕЙ ПАМЯТИ.

Внешняя память (ВЗУ) предназначена для длительного хранения программ и данных, и целостность её содержимого не зависит от того, включен или выключен компьютер. В отличие от оперативной памяти, внешняя память не имеет прямой связи с процессором. Информация от ВЗУ к процессору и наоборот циркулирует примерно по следующей цепочке:

Взу óОЗУ ó Кэш ó Процессор

В состав внешней памяти компьютера входят:

  • накопители на жёстких магнитных дисках;
  • накопители на гибких магнитных дисках;
  • накопители на компакт-дисках;
  • накопители на магнито-оптических компакт-дисках;
  • накопители на магнитной ленте (стримеры) и др.

1. Накопители на гибких магнитных дисках

Дискета состоит из круглой полимерной подложки, покрытой с обеих сторон магнитным окислом и помещенной в пластиковую упаковку, на внутреннюю поверхность которой нанесено очищающее покрытие. В упаковке сделаны с двух сторон радиальные прорези, через которые головки считывания/записи накопителя получают доступ к диску.
Способ записи двоичной информации на магнитной среде называется магнитным кодированием. Он заключается в том, что магнитные домены в среде выстраиваются вдоль дорожек в направлении приложенного магнитного поля своими северными и южными полюсами. Обычно устанавл

ивается однозначное соответствие между двоичной информацией и ориентацией магнитных доменов.

Информация записывается по концентрическим дорожкам (трекам ), которые делятся на секторы . Количество дорожек и секторов зависит от типа и формата дискеты. Сектор хранит минимальную порцию информации, которая может быть записана на диск или считана. Ёмкость сектора постоянна и составляет 512 байтов.

В настоящее время наибольшее распространение получили дискеты со следующими характеристиками: диаметр 3,5 дюйма (89 мм), ёмкость 1,44 Мбайт, число дорожек 80, количество секторов на дорожках 18.

Дискета устанавливается в накопитель на гибких магнитных дисках (англ. floppy-disk drive ), автоматически в нем фиксируется , после чего механизм накопителя раскручивается до частоты вращения 360 мин -1 . В накопителе вращается сама дискета, магнитные головки остаются неподвижными. Дискета вращается только при обращении к ней. Накопитель связан с процессором через контроллер гибких дисков.

В последнее время появились трехдюймовые дискеты, которые могут хранить до 3 Гбайт информации. Они изготовливаются по новой технологии Nano2 и требуют специального оборудования для чтения и записи.

2. Накопители на жестких магнитных дисках

Если гибкие диски - это средство переноса данных между компьютерами, то жесткий диск - информационный склад компьютера .

Как и у дискеты, рабочие поверхности платтеров разделены на кольцевые концентрические дорожки, а дорожки - на секторы. Головки считывания-записи вместе с их несущей конструкцией и дисками заключены в герметически закрытый корпус, называемый модулем данных. При установке модуля данных на дисковод он автоматически соединяется с системой, подкачивающей очищенный охлажденный воздух. Поверхность платтера имеет магнитное покрытие толщиной всего лишь в 1,1 мкм, а также слой смазки для предохранения головки от повреждения при опускании и подъёме на ходу. При вращении платтера над ним образуется воздушный слой, который обеспечивает воздушную подушку для зависания головки на высоте 0,5 мкм над поверхностью диска.

Винчестерские накопители имеют очень большую ёмкость: от 10 до 100 Гбайт. У современных моделей скорость вращения шпинделя (вращающего вала) обычно составляет 7200 об/мин, среднее время поиска данных 9 мс, средняя скорость передачи данных до 60 Мбайт/с. В отличие от дискеты, жесткий диск вращается непрерывно . Все современные накопители снабжаются встроенным кэшем (обычно 2 Мбайта), который существенно повышает их производительность. Винчестерский накопитель связан с процессором через контроллер жесткого диска.

4. Накопители на компакт-дисках

Здесь носителем информации является CD-ROM (Сompact Disk Read-Only Memory - компакт диск, из которого можно только читать).

CD-ROM представляет собой прозрачный полимерный диск диаметром 12 см и толщиной 1,2 мм, на одну сторону которого напылен светоотражающий слой алюминия, защищенный от повреждений слоем прозрачного лака. Толщина напыления составляет несколько десятитысячных долей миллиметра.

Информация на диске представляется в виде последовательности впадин (углублений в диске) и выступов (их уровень соответствует поверхности диска), расположеных на спиральной дорожке, выходящей из области вблизи оси диска. На каждом дюйме (2,54 см) по радиусу диска размещается 16 тысяч витков спиральной дорожки. Для сравнения - на поверхности жесткого диска на дюйме по радиусу помещается лишь несколько сотен дорожек. Емкость CD достигает 780 Мбайт . Информация наносится на диск при его изготовлении и не может быть изменена.

CD-ROM обладают высокой удельной информационной емкостью, что позволяет создавать на их основе справочные системы и учебные комплексы с большой иллюстративной базой. Один CD по информационной емкости равен почти 500 дискетам. Cчитывание информации с CD-ROM происходит с достаточно высокой скоростью, хотя и заметно меньшей, чем скорость работы накопителей на жестком диске. CD-ROM просты и удобны в работе, имеют низкую удельную стоимость хранения данных, практически не изнашиваются, не могут быть поражены вирусами, c них невозможно случайно стереть информацию.

В отличие от магнитных дисков, компакт-диски имеют не множество кольцевых дорожек, а одну - спиральную, как у грампластинок. В связи с этим, угловая скорость вращения диска не постоянна. Она линейно уменьшается в процессе продвижения читающей лазерной головки к краю диска.

Для работы с CD-ROM нужно подключить к компьютеру накопитель CD-ROM (рис. 2.9), преобразующий последовательность углублений и выступов на поверхности CD-ROM в последовательность двоичных сигналов. Для этого используется считывающая головка с микролазером и светодиодом. Глубина впадин на поверхности диска равна четверти длины волны лазерного света. Если в двух последовательных тактах считывания информации луч света лазерной головки переходит с выступа на дно впадины или обратно, разность длин путей света в этих тактах меняется на полуволну, что вызывает усиление или ослабление совместно попадающих на светодиод прямого и отраженного от диска света.

Если в последовательных тактах считывания длина пути света не меняется, то и состояние светодиода не меняется. В результате ток через светодиод образует последовательность двоичных электрических сигналов, соответствующих сочетанию впадин и выступов на дорожке.

Различная длина оптического пути луча света в двух последовательных тактах считывания информации соответствует двоичным единицам. Одинаковая длина соответствует двоичным нулям.

Сегодня почти все персональные компьютеры имеют накопитель CD-ROM. Но многие мультимедийные интерактивные программы слишком велики, чтобы поместиться на одном CD. На смену технологии СD-ROM стремительно идет технология цифровых видеодисков DVD . Эти диски имеют тот же размер, что и обычные CD, но вмещают до 17 Гбайт данных , т.е. по объему заменяют 20 стандартных дисков CD-ROM. На таких дисках выпускаются мультимедийные игры и интерактивные видеофильмы отличного качества, позволяющие зрителю просматривать эпизоды под разными углами камеры, выбирать различные варианты окончания картины, знакомиться с биографиями снявшихся актеров, наслаждаться великолепным качеством звука.

4. Накопитель на магнито-оптических компакт-дисках DVD

4,7 17 50-hd dvd 200 blue ray

Накопитель WARM (Write And Read Many times), позволяет производить многократную запись и считывание.

5. Накопители на магнитной ленте (стримеры)

Стримеры позволяют записать на небольшую кассету с магнитной лентой огромное количество информации. Встроенные в стример средства аппаратного сжатия позволяют автоматически уплотнять информацию перед её записью и восстанавливать после считывания, что увеличивает объём сохраняемой информации.

Недостатком стримеров является их сравнительно низкая скорость записи, поиска и считывания информации.

  1. Флешка

Кристалл на который записывается информация –32гб

20. ЖИДКОКРИСТАЛЛИЧЕСКИЕ МОНИТОРЫ. МОНИТОРЫ, ПОСТОРЕННЫЕ НА ОСНОВЕ ЭЛТ

Видеосистема компьютера состоит из трех компонент:

монитор (называемый также дисплеем);

видеоадаптер ;

программное обеспечение (драйверы видеосистемы).

Видеоадаптер посылает в монитор сигналы управления яркостью лучей и синхросигналы строчной и кадровой развёрток. Монитор преобразует эти сигналы в зрительные образы. А программные средства обрабатывают видеоизображения - выполняют кодирование и декодирование сигналов, координатные преобразования, сжатие изображений и др.

Подавляющее большинство мониторов сконструированы на базе электронно-лучевой трубки (ЭЛТ) , и принцип их работы аналогичен принципу работы телевизора. Мониторы бывают алфавитно-цифровые и графические, монохромные и цветного изображения. Современные компьютеры комплектуются, как правило, цветными графическими мониторами.

1. Монитор на базе электронно-лучевой трубки

Основной элемент дисплея - электронно-лучевая трубка . Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором - специальным веществом, способным излучать свет при попадании на него быстрых электронов .

Люминофор наносится в виде наборов точек трёх основных цветов - красного , зелёного и синего . Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра.

Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел - точку, из которых формируется изображение (англ. pixel - picture element, элемент картинки).

Расстояние между центрами пикселов называется точечным шагом монитора . Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг составляет 0,24 мм. При таком шаге глаз человека воспринимает точки триады как одну точку "сложного" цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки "нацелены" на один и тот же пиксел, но каждая из них излучает поток электронов в сторону "своей" точки люминофора. Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны. Перед экраном на пути электронов ставится маска - тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д.

Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки. Последняя не должна быть ниже 85 Гц, иначе изображение будет мерцать .

2. Жидкокристаллические мониторы

Все шире используются наряду с традиционными ЭЛТ-мониторами. Жидкие кристаллы - это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим. Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов, помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу - сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Активные матрицы вместо нитей используют прозрачный экран из транзисторов и обеспечивают яркое, практически не имеющее искажений изображение. Экран при этом разделен на независимые ячейки, каждая из которых состоит из четырех частей (для трёх основных цветов и одна резервная). Количество таких ячеек по широте и высоте экрана называют разрешением экрана. Современные ЖК-мониторы имеют разрешение 642х480, 1280х1024 или 1024х768. Таким образом, экран имеет от 1 до 5 млн точек, каждая из которых управляется собственным транзистором. По компактности такие мониторы не знают себе равных. Они занимают в 2 - 3 раза меньше места, чем мониторы с ЭЛТ и во столько же раз легче; потребляют гораздо меньше электроэнергии и не излучают электромагнитных волн, воздействующих на здоровье людей.

21. ПРИНТЕРЫ. ПЛОТТЕР. СКАНЕР

Существуют тысячи наименований принтеров. Но основных видов принтеров три: матричные, лазерные и струйные.

· Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.

· Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти "образ" страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.

После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок - тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и "вплавляется" в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.

· Струйные принтеры генерируют символы в виде последовательности чернильных точек . Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов - ярко-голубого, пурпурного, желтого и черного.

Принтер связан с компьютером посредством кабеля принтера, один конец которого вставляется своим разъёмом в гнездо принтера, а другой - в порт принтера компьютера. Порт - это разъём, через который можно соединить процессор компьютера с внешним устройством .

Каждый принтер обязательно имеет свой драйвер - программу, которая способна переводить (транслировать) стандартные команды печати компьютера в специальные команды, требующиеся для каждого принтера.

Плоттеры используются для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.

Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.

Плоттеру, так же, как и принтеру, обязательно нужна специальная программа - драйвер , позволяющая прикладным программам передавать ему инструкции: поднять и опустить перо, провести линию заданной толщины и т.п.

Если принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры , которые прокатывают по поверхности документа рукой, и планшетные сканеры , по внешнему виду напоминающие копировальные машины.

Схемы, в которых в качестве запоминающей ячейки используется параллельный регистр называются статическим оперативным запоминающим устройством - статическим ОЗУ (RAM - random access memory - память с произвольным доступом), т.к. информация в нем сохраняется все время, пока к микросхеме ОЗУ подключено питание. В отличие от статической ОЗУ в микросхемах динамического ОЗУ постоянно требуется регенерировать их содержимое, иначе информация будет испорчена.В современной компьютерной системе используется память различного типа: статическая (SRAM), динамическая (DRAM), постоянная память, перепрограммируемая постоянная память и некоторые другие виды памяти.

Но, основной памятью компьютера, определяющей всю его работу, является оперативная память - ОЗУ. Главное требование к памяти:

Первоначально оперативная память была статического типа . Ячейка ОЗУ строилась на базе транзисторного каскада, который мог содержать до 10 транзисторов. Быстродействие у статической памяти было высокое, поскольку время переключения транзисторов из одного состояния в другое очень мало. Однако, такое количество транзисторов в расчете на одну ячейку памяти занимало довольно большой физический объем, т.е., "втиснуть" большой объем памяти в малое физическое пространство оказалось невозможным. Второй неприятной особенностью статического массива памяти стал тот факт, что транзисторы потребляют относительно большой уровень энергии, что также накладывает свои ограничения на максимальный объем памяти. Указанных выше недостатков лишена динамическая память , ячейка которой состоит из конденсатора и управляющего транзистора. Когда конденсатор заряжен - это одно логическое состояние, когда разряжен - другое. Двух состояний вполне достаточно, поскольку компьютерная система работает с двоичным кодом (сигнал либо есть - логическая "1", либо сигнала нет - логический "0"). Конденсатор и транзистор занимают места гораздо меньше, чем несколько транзисторов. Энергопотребление такого тандема тоже гораздо ниже. Но, с быстродействием возникают проблемы. Тут причин несколько:

  • разряд/заряд конденсатора - процесс более длительный, чем простое переключение транзистора;
  • у конденсатора существует ток утечки, который тем больше (в относительных единицах), чем меньше емкость конденсатора. Поэтому, для нормальной работы динамической памяти требуется периодическая регенерация памяти (подзаряд конденсаторов), что усложняет электрическую схему работы динамической памяти.

Но, поскольку, основополагающим требованием для оперативной памяти является ее объем (современные модули памяти имеют объем в несколько Гб), то динамическая память оказалась предпочтительней, несмотря на то, что она работает медленнее и имеет сложную схему управляющего контроллера.

Основой ячейки памяти в ЗУ статического типа является триггер. В качестве базовых элементов для реализации триггера могут использоваться как биполярные транзисторы, так и полевые. Однако первые не нашли широкого применения в силу большой потребляемой мощности построенных на их основе микросхем памяти. Поэтому оптимальным является использование полевых транзисторов. На рис.1 представлен триггер на МОП-транзисторах с индуцируемым p-каналом. Для отпирания такого транзистора напряжение на его затворе относительно истока должно быть меньше нуля: U зи <0.

Рис. 1 - Принципиальная схема ячейки ОЗУ статического типа.

В микросхемах ОЗУ присутствуют две операции: операция записи и операция чтения. Для записи и чтения информации можно использовать различные шины данных (как это делается в сигнальных процессорах), но чаще используется одна и та же шина данных. Это позволяет экономить внешние выводы микросхем, подключаемых к этой шине и легко осуществлять коммутацию сигналов между различными устройствами.

Структурная схема статического ОЗУ приведена на рисунке 2. Вход и выход ОЗУ в этой схеме объединены при помощи шинного формирователя . Естественно, что схемы реальных ОЗУ будут отличаться от приведенной на этом рисунке. Тем не менее, приведенная схема позволяет понять как работает реальное ОЗУ. Условно-графическое обозначение ОЗУ на принципиальных схемах приведено на рисунке 3.

Рис. 2 - Структурная схема ОЗУ (RAM)

Сигнал записи WR позволяет записать логические уровни, присутствующие на информационных входах во внутреннюю ячейку ОЗУ (RAM). Сигнал чтения RD позволяет выдать содержимое внутренней ячейки памяти на информационные выходы микросхемы. В приведенной на рисунке 1 схеме невозможно одновременно производить операцию записи и чтения, но обычно это и не нужно.

Конкретная ячейка ОЗУ выбирается при помощи двоичного кода - адреса ячейки. Объем памяти ОЗУ (RAM) зависит от количества ячеек, содержащихся в ней или, что то же самое, от количества адресных проводов. Количество ячеек в ОЗУ можно определить по количеству адресных проводов, возводя 2 в степень, равную количеству адресных выводов в микросхеме:

Вывод выбора кристалла CS микросхем ОЗУ позволяет объединять несколько микросхем для увеличения объема памяти ОЗУ. Такая схема приведена на рисунке 3.


Рис. 3 - Схема ОЗУ, построенного на нескольких микросхемах памяти.

Статические ОЗУ требуют для своего построения большой площади кристалла, поэтому их ёмкость относительно невелика. Статические ОЗУ применяются для построения микроконтроллерных схем из-за простоты построения принципиальной схемы и возможности работать на сколь угодно низких частотах, вплоть до постоянного тока. Кроме того статические ОЗУ применяются для построения КЭШ-памяти в универсальных компьютерах из-за высокого быстродействия статического ОЗУ.

Статическая память

Статическая память (SRAM ) обычно применяется в качестве кэш-памяти второго уровня (L2) для кэширования основного объема ОЗУ. Статическая память выполняется обычно на основе ТТЛ-, КМОП- или БиКМОП-микросхем и по способу доступа к данным может быть как асинхронной , так и синхронной . Асинхронным называется доступ к данным, который можно осуществлять в произвольный момент времени. Асинхронная SRAM применялась на материнских платах для третьего - пятого поколений процессоров. Время доступа к ячейкам такой памяти составляло от 15 нс (33 МГц) до 8 нс (66 МГц).

Синхронная память обеспечивает доступ к данным не в произвольные моменты времени, а одновременно (синхронно) с тактовыми импульсами. В промежутках между ними память может готовить для доступа следующую порцию данных. В большинстве материнских плат пятого поколения используется разновидность синхронной памяти - синхронно-конвейерная SRAM (Pipelined Burst SRAM), для которой типичное время одиночной операции чтения/записи составляет 3 такта, а групповая операция занимает 3-1 - 1 - 1 такта при первом обращении и 1 - 1 - 1 - 1 при последующих обращениях, что обеспечивает ускорение доступа более чем на 25 %.

SRAM в качестве элементарной ячейки использует так называемый статический триггер (схема которого состоит из нескольких транзисторов). Статический тип памяти обладает более высоким быстродействием и используется, например, для организации кэш-памяти.

Async SRAM (Асинхронная статическая память). Это кэш-память, которая используется в течение многих лет с тех пор, как появился первый 386-й компьютер с кэш-памятью второго уровня. Обращение к ней осуществляется быстрее, чем к DRAM, и может, в зависимости от скорости процессора, использовать варианты с 20-, 15- или 10-нс доступом (чем меньше время обращения к данным, тем быстрее память и тем короче может быть пакетный доступ к ней). Тем не менее, как видно из названия, эта память является недостаточно быстрой для синхронного доступа, что означает, что при обращении процессора все-таки требуется ожидание, хотя и меньшее, чем при использовании DRAM.

SyncBurst SRAM (Синхронная пакетная статическая память). При частотах шины, не превышающих 66 МГц, синхронная пакетная SRAM является наиболее быстрой из существующих видов памяти. Причина этого в том, что, если процессор работает на не слишком большой частоте, синхронная пакетная SRAM может обеспечить полностью синхронную выдачу данных, что означает отсутствие задержки при пакетном чтении процессором 2-1-1 - 1, т. е. синхронная пакетная SRAM выдает данные в пакетном цикле 2-1-1 - 1. Когда частота процессора становится больше 66 МГц, синхронная пакетная SRAM не справляется с нагрузкой и выдает данные пакетами по 3-2-2-2, что существенно медленнее, чем при использовании конвейерной пакетной SRAM. К недостаткам относится и то, что синхронная пакетная SRAM производится меньшим числом компаний и поэтому стоит дороже. Синхронная пакетная SRAM имеет время адрес/данные от 8,5 до 12 нс.

Существует несколько основных конструктивных особенностей синхронной пакетной SRAM, которые делают ее существенно превосходящей асинхронную SRAM при использовании в качестве высокоскоростной кэш-памяти:

Синхронизация с системным таймером. В простейшем смысле это означает, что все сигналы запускаются от фронта сигнала таймера. Получение сигналов по фронту тактового импульса таймера существенно упрощает создание быстродействующей системы;

Пакетная обработка. Синхронные пакетные SRAM обеспечивают высокое быстродействие при небольшом количестве логических схем, организующих циклическую работу памяти с последовательными адресами. Четырехадресная пакетная последовательность может быть перемежающейся для совместимости с Intel или линейной для PowerPC и остальных систем.

Указанные особенности дают микропроцессору возможность более быстрого доступа к последовательным адресам, чем это можно сделать при других способах использования технологии SRAM. Хотя у некоторых поставщиков и имеется асинхронная SRAM 3.3V со временем таймер-данные, равным 15 нс, конвейерная синхронная пакетная SRAM, выполненная по такой же технологии, может обеспечить время таймер-данные менее 6 нс.

РВ SRAM (Конвейерная пакетная статическая память). Конвейер - это распараллеливание операций SRAM с использованием входных и выходных регистров. Заполнение регистров требует дополнительного начального цикла, но, будучи однажды заполненными, регистры обеспечивают быстрый переход к следующему адресу за то время, пока по текущему адресу считываются данные.

Благодаря этому такая память является наиболее быстрой кэш-памятью для систем с производительностью шины более 75 МГц. РВ SRAM может работать при частоте шины до 133 МГц. Она, кроме того, работает не намного медленнее, чем синхронная пакетная SRAM при использовании в медленных системах: она выдает данные все время пакетами по 3-1-1 - 1. Насколько высока производительность этой памяти, можно видеть по времени адрес/данные, которое составляет от 4,5 до 8 нс.

1-Т SRAM . Как уже отмечалось ранее, традиционные конструкции SRAM используют статический триггер для запоминания одного разряда (ячейки). Для реализации одной такой схемы на плате должно быть размещено от 4 до 6 транзисторов (4-Т, 6-Т SRAM). Фирма Monolithic System Technology (MoSys) объявила о создании нового типа памяти, в которой каждый разряд реализован на одном транзисторе (1-Т SRAM). Фактически здесь применяется технология DRAM, поскольку приходится осуществлять периодическую регенерацию памяти. Однако интерфейс с памятью выполнен в стандарте SRAM, при этом циклы регенерации скрыты от контроллера памяти. Схемы 1-Т позволяют снизить размер кремниевого кристалла на 50-80 % по сравнению с аналогичными для традиционных SRAM, а потребление электроэнергии - на 75 %.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...