Схемы терморегуляторов для котлов своими руками. Как сделать термореле для отопления своими руками

Приведенная ниже схема является развитием темы . В данном случае добавляются термочувствительный и нагревательный элементы благодаря которым и поддерживается требуемая температура. Включая-отключая нагрузку, которой служит электронагреватель, терморегулятор регулирует температуру микросреды инкубатора, аквариума или другого замкнутого пространства.

Схема терморегулятора

  • R1 – 10 кОм;
  • R2 – 22 кОм;
  • R3 – 100 кОм;
  • R4 – 6,8 кОм;
  • R5 – 1 кОм;
  • R6 – 6,8 кОм;
  • R7 – 470 Ом;
  • R8 – 51 Ом;
  • R9 – 5,1 кОм;
  • R10 – 27 кОм 2Вт ;
  • С1 – 0,33 мкФ;
  • DA1 – КР140УД6;
  • VT1 – КТ117;
  • VD1 – КС212Ж;
  • VD2 – КД105;
  • VS1 – КУ208Г.

Принцип работы терморегулятора

Итак, рассмотрим как работает схема терморегулятора для инкубатора своими руками: основой данного устройства является операционный усилитель DA1, работающий в режиме компаратора напряжений. На один вход подается изменяющееся напряжение с терморезистора R2, а на второй, задаваемое переменным резистором R5 и подстроечным R4. Для точной и грубой регулировки. В зависимости от области применения, подстроечный резистор можно и исключить.
При равенстве входных напряжений транзистор VT1, управляемый выходом компаратор – закрыт, на управляющем электроде VS1 ноль, а значит закрыт и симистор. При изменении температуры меняется сопротивление R2, а на разницу напряжений на входах компаратор отреагирует подачей открывающего сигнала на VT1. Появившееся на R8 напряжение откроет тиристор, пустив через нагрузку ток. Когда напряжения на входах операционного усилителя выравняются, он отключит нагрузку.
Питание управляющего каскада осуществляется через выпрямительный диод VD2 и гасящее сопротивление R10. При его сверхмалом потреблении тока – это вполне допустимо, как и использование для стабилизации питающего напряжения всего одного стабилитрона VD1. К тому же, управляющие цепи запитываются через нагрузку, на которой тоже происходит падение напряжения, особенно в нагретом состоянии.

Замены деталей

Обратите внимание на мощность резистора R10 — 2Вт, так же этот резистор должен выдерживать мгновенное напряжение 400В, если такой резистор не удается найти, его можно заменить несколькими последовательно включенными резисторами на меньшую мощность и напряжение.
В качестве стабилитрона VD1 можно установить BZX30C12 или любой другой стабилитрон на 12В близкий по параметрам.
Вместо VD2 можно поставить диод с обратным напряжением не менее 400В и током не менее 0,3А: например из серии
На место DA1 можно установить практически любой операционный усилитель, главное чтобы он работал в диапазоне питающих напряжений 10..15В.

А вот однопереходный транзистор КТ117 (VT1) не такой общераспространенный компонент электронных схем (зарубежные однопереходные транзисторы: 2N6027, 2N6028), зато его можно заменить схемой из двух биполярных транзисторов разной структуры и одного резистора 47 кОм. В схеме используются распространенные КТ315 и КТ361, но вполне могут использоваться и другие маломощные комплиментарные биполярные транзисторы.


Области применения терморегулятора

В основном, данное устройство применялось для термостабилизации птичьих инкубаторов. Где в роли тэнов выступали маломощные электрические лампочки по 60 Вт, соединенные параллельно по 4, 6 и 8 штук, в зависимости от размеров инкубатора и количества инкубируемых яиц.

Как монтировать обогреватель для инкубатора

  • лампы должны быть равномерно расположены над поверхностью яиц, на расстоянии 25-30 см от их поверхности;
  • терморезистор должен находиться как можно ближе к поверхности яиц, но не касаться их;
  • использовать вместо лампочек можно и другие нагреватели, но с малой теплоемкостью, к примеру, вольфрамовую проволоку, натянутую на керамическую рамку в форме тетраэдра.

Обогреватель для аквариума

Реже, такой терморегулятор применялся для поддержания заданной температуры в аквариумах с тропическими рыбками. Такая необходимость возникала из-за того, что большинство, выпускаемых для этих целей термообогревателей, имеет механический терморегулятор объединенный с тэном в одном корпусе. А следовательно, они поддерживают в заданных пределах свою, а не окружающую температуру. Это хорошо работает только в помещениях со стабильной, в пределах одного-двух градусов, своей температурой воздуха.

Особенности монтажа

  • из-за инертности воды, датчик и обогреватель должны быть разнесены, но в пределах прямой видимости (без перекрытия растениями и элементами декора) друг от друга;
  • из-за электропроводимости воды, датчик должен быть изолирован, либо средствами с хорошей теплопроводностью, либо тонким слоем обычного герметика;
  • допускается использование как обычных аквариумных обогревателей, так и регулируемых, с выставленной на максимум температурой.

Можно найти и другие сферы применения данному, несложному в изготовлении устройству. К примеру для рассадных парничков, сушильных шкафов, различных термованночек. На что вашей фантазии хватит. Только, если нагрузка допускает возможность короткого замыкания, необходимо добавить плавкий предохранитель на 1 А.

P.S.
Как говорилось выше данный простой терморегулятор применялся в инкубаторах раньше, сейчас на его смену пришли терморегуляторы с микроконтроллерным управлением, способные в автоматическом режиме понижать температуру в течении цикла инкубации. Да и сами инкубаторы обзавелись функцией регулирования влажности и переворачивания яиц.

Поскольку процесс пайки связан с расплавлением припоя, необходимо всегда выдерживать оптимальную температуру нагрева. Учитываются следующие факторы:

  • Температура плавления припоя (от 150 до 320 градусов);
  • Термостойкость элементов, на которых производится пайка. Многие радиокомпоненты просто выходят из строя при продолжительном нагреве, а изоляция проводов теряет свои свойства;
  • Площадь рассеивания контактов. При соединении массивных элементов, необходимо иметь запас по температуре и мощности.

Если вы просто спаиваете провода, достаточно знать мощность паяльника и примерную температуру плавления припоя. Критерий простой – быстрый или медленный нагрев.

А вот при монтаже печатных плат или ремонте электроприборов – неверно выбранная температура паяльника может вылиться в приобретение дорогостоящих радиодеталей, которые будут повреждены высокой температурой.

Температура паяльника для пайки – как подобрать

  1. Если монтаж не связан со специфическими радиодеталями, чувствительными к перегреву – степень нагрева жала должна на 10 градусов превышать температуру плавления припоя. Причем не точку начала расплава – а именно температуру устойчивого нахождения в жидком состоянии;
  2. Если планируется соединять контакты с большой площадью и массой – повышается не величина нагрева, а мощность паяльника. Маломощный прибор с высокой температурой все равно не справится с рассеиванием. Компенсируют массу детали соответствующим размером рабочего жала. А для его разогрева требуется мощность, а не градусы;
  3. В паспорте радиокомпонентов обычно указывается максимально допустимое значение нагрева корпуса. Это относится и к температуре пайки. Опять же, сделайте выбор в пользу мощности, а не повышения градуса. Надо стараться, чтобы время контакта жала и детали было минимальным. Припой должен расплавиться, а корпус оставаться не перегретым.

Для различных условий работы выпускаются паяльники электрические с регулировкой температуры.

Не имеет значения конструктивное исполнение, регулятор может быть встроенным в корпус или выполнен в виде отдельного блока. Главное – вы знаете, насколько горячее жало у инструмента.

СХЕМЫ ТЕРМОРЕГУЛЯТОРОВ

Существует большое количество электрических принципиальных схем, которые могут поддерживать желаемую заданную температуру с точностью до 0,0000033 °С. Эти схемы включают коррекцию при отклонении от установленного значения температуры, пропорциональное, интегральное и дифференциальное регулирование.
В регуляторе для электроплиток (рис. 1.1) используется позистор (терморезистор с положительным температурным коэффициентом сопротивления или ТКС) типа К600А фирмы Allied Electronics, встроенный в кухонную плиту, чтобы поддерживать идеальную температуру варки. Потенциометром можно регулировать запуск семисторного регулятора и, соответственно, включение или выключение нагревательного элемента. Устройство предназначено для работы в электрической сети с напряжением 115 В. При включении устройства в сеть напряжением 220 В необходимо использовать другой питающий трансформатор и семистор.

Рисунок 1.1 Регулятор температуры электроплиты

Таймер LM122 производства компании National используется как дозирующий терморегулятор с оптической развязкой и синхронизацией при прохождении питающего напряжения через нуль. Установкой резистора R2 (рис. 1.2) задается регулируемая позистором R1 температура. Тиристор Q2 подбирается из расчета подключаемой нагрузки по мощности и напряжению. Диод D3 определен для напряжения 200 В. Резисторы R12, R13 и диод D2 реализуют управление тиристором при прохождении питающего напряжения через нуль.


Рисунок 1.2 Дозирующий регулятор мощности нагревателя

Простая схема (рис. 1.3) с переключателем при переходе питающего напряжения через нуль на микросхеме СА3059 позволяет регулировать включение и выключение тиристора, который управляет катушкой нагревательного элемента или реле для управления электро- или газовой печью. Переключение тиристора происходит при малых токах. Измерительное сопротивление NTC SENSOR обладает отрицательным температурным коэффициентом. Резистором Rp устанавливается желаемая температура.


Рисунок 1.3 Схема терморегулятора с комутацией нагрузки при переходе питания через ноль.

Устройство (рис. 1.4) обеспечивает пропорциональное регулирование температуры небольшой маломощной печи с точностью до 1 °С относительно температуры, заданной с помощью потенциометра. В схеме используется стабилизатор напряжения 823В, который питается, как и печь, от того же источника напряжением 28 В. Для задания величины температуры должен использоваться 10-оборотный проволочный потенциометр. Мощный транзистор Qi работает в режиме насыщения или близко к этому режиму, однако радиатор для охлаждения транзистора не требуется.


Рисунок 1.4 Схема терморегулятора для низковольтного нагревателя

Для управления семистором при переходе питающего напряжения через нуль используется переключатель на микросхеме SN72440 от фирмы Texas Instruments. Эта микросхема переключает симистор TRIAC (рис. 1.5), включающий или выключающий нагревательный элемент, обеспечивая необходимый нагрев. Управляющий импульс в момент перехода напряжения сети через нуль подавляется или пропускается под действием дифференциального усилителя и моста сопротивления в интегральной схеме (ИС). Ширина последовательных выходных импульсов на выводе 10 ИС регулируется потенциометром в цепи запуска R(trigger)? как это показано в таблице на рис. 1.5, и должна изменяться в зависимости от параметров используемого симистора.


Рисунок 1.5 Терморегулятор на микросхеме SN72440

Обычный кремниевый диод с температурным коэффициентом 2 мВ/°С служит для поддержания разницы температур до ±10 °F] с точностью примерно 0,3 °F в широком диапазоне температур. Два диода, включенные в мост сопротивлений (рис. 1.6)^ дают напряжение на выводах А и В, которое пропорционально разнице температуры. Потенциометром регулируется ток смещения, который соответствует предварительно устанавливаемой области смещения температуры. Низкое выходное напряжение моста усиливается операционным усилителем MCI741 производства фирмы Motorola до 30 В при изменении напряжения на входе на 0,3 мВ. Буферный транзистор добавлен для подключения нагрузки с помощью реле.


Рисунок 1.6 Регулятор температуры с датчиком на диоде

Температура по шкале Фаренгейта. Для перевода температуры из шкалы Фаренгейта в шкалу Цельсия нужно от исходного числа отнять 32 и умножить результат на 5/9/

Позистор RV1 (рис. 1.7) и комбинация из переменного и постоянного резисторов образуют делитель напряжения, поступающего с 10-вольтового диода Зенера (стабилитрона). Напряжение с делителя подается на однопереходный транзистор. Во время положительной полуволны напряжения сети на конденсаторе возникает напряжение пилообразной формы, амплитуда которого зависит от температуры и установки сопротивления на потенциометре номиналом 5 кОм. Когда амплитуда этого напряжения достигает отпирающего напряжения однопереходного транзистора, он включает тиристор, который и подает напряжение на нагрузку. Во время отрицательной полуволны переменного напряжения тиристор выключается. Если температура печи низка, то тиристор открывается в полуволне раньше и производит больший нагрев. Если предварительно установленная температура достигнута, то тиристор открывается позже и производит меньший нагрев. Схема разработана для использования в устройствах с температурой окружающей среды 100 °F.


Рисунок 1.7 Терморегулятор для хлебопечки

Простой регулятор (рис. 1.8), содержащий измерительный мост с термистором и два операционных усилителя, регулирует температуру с очень высокой точностью (до 0,001 °С) и большим динамическим диапазоном, что необходимо при быстрых изменениях условий окружающей среды.


Рисунок 1.8 Схема терморегулятора повышенной точности

Устройство (рис. 1.9) состоит из симистора и микросхемы, которая включает в себя источник питания постоянного тока, детектор перехода питающего напряжения через нуль, дифференциальный усилитель, генератор пилообразного напряжения и выходной усилитель. Устройство обеспечивает синхронное включение и выключение омической нагрузки. Управляющий сигнал получается при сравнении напряжения, получаемого от чувствительного к температуре измерительного моста из резисторов R4 и R5 и резистора с отрицательным температурным коэффициентом R6, а также резисторов R9 и R10 в другой цепи. Все необходимые функции реализованы в микросхеме ТСА280А фирмы Milliard. Показанные значения действительны для симистора с током управляющего электрода 100 мА, для другого симистора значения номиналов резисторов Rd, Rg и конденсатора С1 должны изменяться. Пределы пропорционального регулирования могут устанавливаться с помощью изменения значения резистора R12. При проходе через нуль напряжения сети симистор будет переключаться. Период колебаний пилообразной формы составляет примерно 30 сек и может устанавливаться изменением емкости конденсатора С2.

Представленная простая схема (рис. 1.10) регистрирует разницу температур двух объектов, нуждающихся в использовании регулятора. Например, для включения вентиляторов, выключения нагревателя или для управления клапанами смесителей воды. Два недорогих кремниевых диода 1N4001, установленные в мост сопротивлений, используются как датчики. Температура пропорциональна напряжению между измерительным и опорным диодом, которое подается на выводы 2 и 3 операционного усилителя МС1791. Так как при разнице температур с выхода моста поступает только примерно 2 мВ/°С, то необходим операционный усилитель с высоким усилением. Если для нагрузки требуется более 10 мА, то необходим буферный транзистор.

Рисунок 1.10 Схема терморегулятора с измерительным диодом

При падении температуры ниже установленного значения разность напряжений, на измерительном мосте с терморезистором, регистрируется дифференциальным операционным усилителем, который открывает буферный усилитель на транзисторе Q1 (рис. 1.11) и усилитель мощности на транзисторе Q2. Рассеиваемая мощность транзистора Q2 и его нагрузки резистора R11 обогревают термостат. Терморезистор R4 (1D53 или 1D053 от фирмы National Lead) имеет номинальное сопротивление 3600 Ом при 50 °С. Делитель напряжения Rl-R2 уменьшает входной уровень напряжения до необходимого значения и способствует тому, что терморезистор работает при малых токах, обеспечивающих малый разогрев. Все цепи моста, за исключением резистора R7, предназначенного для точной регулировки температуры, находятся в конструкции термостата.


Рисунок 1.11 Схема терморегулятора с измерительным мостом

Схема (рис. 1.12) осуществляет линейное регулирование температуры с точностью до 0,001 °С, с высокой мощностью и высокой эффективностью. Источник опорного напряжения на микросхеме AD580 питает мостовую схему преобразователя температуры, в которой платиновый измерительный резистор (PLATINUM SENSOR) работает в качестве датчика. Операционный усилитель AD504 усиливает выходной сигнал моста и управляет транзистором 2N2907, который, в свою очередь, управляет синхронизируемым с частотой 60 Гц генератором на однопереходном транзисторе. Этот генератор питает управляющий электрод тиристора через развязывающий трансформатор. Предварительная установка способствует тому, что тиристор включается в различных точках переменного напряжения, что необходимо для точной регулировки нагревателя. Возможный недостаток - возникновение помех высокой частоты, т. к. тиристор переключается посреди синусоиды.


Рисунок 1.12 Тиристорный терморегулятор

Узел управления мощного транзисторного ключа (рис. 1.13) для нагрева инструментов мощностью 150 Вт использует отвод на нагревательном элементе, чтобы принудить переключатель на транзисторе Q3 и усилитель на транзисторе Q2 достичь насыщения и установить малую рассеиваемую мощность. Когда на вход транзистора Qi поступает положительное напряжение, транзистор Qi открывается и приводит транзисторы Q2 и Q3 в открытое состояние. Ток коллектора транзистора Q2 и базовый ток транзистора Q3 определяются резистором R2. Падение напряжения на резисторе R2 пропорционально напряжению питания, так что управляющий ток обладает оптимальным уровнем для транзистора Q3 при большом диапазоне напряжения.


Рисунок 1.13 Ключ для низковольтного терморегулятора

Операционный усилитель СА3080А производства фирмы RCA (рис. 1.14) включает вместе термопару с переключателем, срабатывающем при проходе питающего напряжения через нуль и выполненным на микросхеме СА3079, который служит как триггер для симистора с нагрузкой переменного напряжения. Симистор нужно подбирать Под регулируемую нагрузку. Напряжение питания для операционного усилителя некритично.


Рисунок 1.14 Терморегулятор на термопаре

При использовании фазового управления симистором ток нагрева сокращается постепенно, если происходит приближение к установленной температуре, что предотвращает большое отклонение от установленного значения. Сопротивление резистора R2 (рис. 1.15) регулируется так, чтобы транзистор Q1 при желаемой температуре был закрыт, тогда генератор коротких импульсов на транзисторе Q2 не функционирует и таким образом симистор больше не открывается. Если температура понижается, то сопротивление датчика RT увеличивается и транзистор Q1 открывается. Конденсатор С1 начинает заряжаться до напряжения открывания транзистора Q2, который лавинообразно открывается, формируя мощный короткий импульс, выполняющий включение симистора. Чем больше открывается транзистор Q1, тем быстрее заряжается емкость С1 и симистор в каждой полуволне переключается раньше и, вместе с тем, в нагрузке возникает большая мощность. Пунктирной линией представлена альтернативная схема для регулирования двигателя с постоянной нагрузкой, например с вентилятором. Для работы схемы в режиме охлаждения резисторы R2 и RT нужно поменять местами.


Рисунок 1.15 Терморегулятор для отопления

Пропорциональный терморегулятор (рис. 1.16) использующий микросхему LM3911 от фирмы National, устанавливает постоянную температуру кварцевого термостата на уровне 75 °С с точностью ±0,1 °С и улучшает стабильность кварцевого генератора, который часто используется в синтезаторах и цифровых счетчиках. Отношение импульс/пауза прямоугольного импульса на выходе (отношение времени включения/выключения) изменяется в зависимости от температурного датчика в ИС и напряжения на инверсном входе микросхемы. Изменения продолжительности включения микросхемы изменяют усредненный ток включения нагревательного элемента термостата таким образом, что температура приводится к заданной величине. Частота прямоугольного импульса на выходе ИС определяется резистором R4 и конденсатором С1. Оптрон 4N30 открывает мощный составной транзистор, у которого в цепи коллектора имеется нагревательный элемент. Во время подачи положительного прямоугольного импульса на базу транзисторного ключа последний переходит в режим насыщения и подключает нагрузку, а при окончании импульса отключает ее.


Рисунок 1.16 Пропорциональный терморегулятор

Регулятор (рис. 1.17) поддерживает температуру печи или ванны с высокой стабильностью на уровне 37,5 °С. Рассогласование измерительного моста регистрируется измерительным операционным усилителем AD605 с высоким коэффициентом подавления синфазной составляющей, низким дрейфом и симметричными входами. Составной транзистор с объединенными коллекторами (пара Дарлингтона) осуществляет усиление тока нагревательного элемента. Транзисторный ключ (PASS TRANSISTOR) должен принимать всю мощность, которая не подводится к нагревательному элементу. Чтобы справляться с этим, большая схема следящей системы подключается между точками "А” и "В", чтобы установить постоянно 3 В на транзисторе без учета напряжения, требуемого для нагревательного элемента. Выходной сигнал операционного усилителя 741 сравнивается в микросхеме AD301A с напряжением пилообразной формы, синхронным с напряжением сети частотой 400 Гц. Микросхема AD301A работает как широтно-импульсный модулятор, включающий транзисторный ключ 2N2219-2N6246. Ключ предоставляет управляемую мощность конденсатору емкостью 1000 мкФ и транзисторному ключу (PASS TRANSISTOR) терморегулятора.


Рисунок 1.17 Высоточный терморегулятор

Принципиальная схема терморегулятора, срабатывающего при проходе напряжения сети через нуль (ZERO-POINT SWITCH) (рис. 1.18), устраняет электромагнитные помехи, которые возникают при фазовом управлении нагрузкой. Для точного регулирования температуры электронагревательного прибора используется пропорциональное включение/выключение семистора. Схема, справа от штриховой линии, представляет собой переключатель, срабатывающий при проходе через нуль питающего напряжения, который включает симистор почти непосредственно после прохода через нуль каждой полуволны напряжения сети. Сопротивление резистора R7 устанавливается таким, чтобы измерительный мост в регуляторе был уравновешен для желаемой температуры. Если температура превышена, то сопротивление позистора RT уменьшается и открывается транзистор Q2, который включает управляющий электрод тиристора Q3. Тиристор Q3 включается и замыкает накоротко сигнал управляющего электрода" симистора Q4 и нагрузка отключается. Если температура понижается, то транзистор Q2 закрывается, тиристор Q3 отключается, а к нагрузке поступает полная мощность. Пропорционального управления достигают подачей пилообразного напряжения, формируемого транзистором Q1, через резистор R3 на цепь измерительного моста, причем период пилообразного сигнала - это сразу 12 циклов частоты сети. От 1 до 12 этих циклов могут вставляться в нагрузку и, таким образом, мощность может модулироваться от 0-100% с шагом 8 %.


Рисунок 1.18 Терморегулятор на симисторе

Схема устройства (рис. 1.19) позволяет оператору устанавливать верхние и нижние границы температуры для регулятора, что бывает необходимо при продолжительных тепловых испытаниях свойств материала. Конструкция переключателя дает возможность для выбора способов управления: от ручного до полностью автоматизированных циклов. С помощью контактов реле К3 управляют двигателем. Когда реле включено, двигатель вращается в прямом направлении с целью повышения температуры. Для понижения температуры направление вращения двигателя меняется на противоположное. Условие переключения реле К3 зависит от того, какое из ограничительных реле было включено последним, К\ или К2. Схема управления проверяет выход программатора температуры. Этот входной сигнал постоянного тока будет уменьшен резисторами и R2 максимально на 5 В и усилен повторителем напряжения А3. Сигнал сравнивается в компараторах напряжения Aj и А2 с непрерывно изменяющимся эталонным напряжением от 0 до 5 В. Пороги компараторов предварительно устанавливаются 10-оборотными потенциометрами R3 и R4. Транзистор Qi закрыт, если сигнал на входе ниже опорного сигнала. Если входной сигнал превосходит опорный сигнал, то транзистор Qi отрывается и возбуждает катушку реле К, верхнего предельного значения.


Рисунок 1.19

Пара преобразователей температуры LX5700 от фирмы National (рис. 1.20) выдает выходное напряжение, которое пропорционально разнице температуры между обоими преобразователями и используется для измерения градиента температуры в таких процессах, как, например, распознавание отказа вентилятора охлаждения, распознавание движения охлаждающего масла, а также для наблюдения за другими явлениями в охлаждающих системах. С измерительным преобразователем, находящимся в горячей среде (вне охлаждающей жидкости или в покоящемся воздухе более 2 мин), 50-омный потенциометр должен устанавливаться таким образом, чтобы выход выключался. Тогда как с преобразователем в прохладной среде (в жидкости или в подвижном воздухе продолжительностью 30 сек) должно находиться положение, при котором выход включается. Эти установки перекрываются между собой, но окончательная установка между тем дает в итоге достаточно стабильный режим.


Рисунок 1.20 Схема детектора температур

В схеме (рис. 1.21) используется высокоскоростной изолированный усилитель AD261K для высокоточного регулирования температуры лабораторной печи. Многодиапазонный мост содержит датчики с сопротивлением от 10 Ом до 1 мОм с делителями Кельвина-Варлея (Kelvin-Varley), которые используются для предварительного выбора точки управления. Выбор точки правления осуществляется с помощью переключателя на 4 положения. Для питания моста допускается применение неинвертирующего стабилизируемого усилителя AD741J, не допускающего синфазной погрешности напряжения. Пассивный фильтр на 60 Гц подавляет помехи на входе усилителя AD261K, который питает транзистор 2N2222A. Далее питание поступает на пару Дарлингтона и подводится 30 В к нагревательному элементу.

Измерительный мост (рис. 1.22) образуется позистором (резистором с положительным температурным коэффициентом) и резисторами Rx R4, R5, Re. Сигнал, снимаемый с моста, усиливается микросхемой СА3046, которая в одном корпусе содержит 2 спаренных транзистора и один отдельный выходной транзистор. Положительная обратная связь через резистор R7 предотвращает пульсации, если достигнута точка переключения. Резистором R5 устанавливается точная температура переключения. Если температура опускается ниже установленного значения, то реле RLA включается. Для противоположной функции должны меняться местами только позистор и Rj. Значение резистора Rj выбирается так, чтобы приблизительно достичь желаемой точки регулировки.


Рисунок 1.22 Регулятор температуры с позистором

Схема регулятора (рис. 1.23) добавляет множество стадий опережающего сигнала к нормально усиленному выходу температурного датчика LX5700 от фирмы National, чтобы, по меньшей мере, частично компенсировать измерительные задержки. Коэффициент усиления по постоянному напряжению операционного усилителя LM216 будет установлен на значение, равное 10, с помощью резисторов с сопротивлением 10 и 100 мОм, что дает в итоге 1 В/°С на выходе операционного усилителя. Выход операционного усилителя активирует оптрон, который управляет обычным терморегулятором.


Рисунок 1.23 Терморегулятор с оптроном

Схема (рис. 1.24) используется для регулирования температуры в установке промышленного отопления, работающей на газе и обладающей высокой тепловой мощностью. Когда операционный усилитель-компаратор AD3H переключается при требуемой температуре, то запускается одновйбратор 555, выходной сигнал которого открывает транзисторный ключ, а следовательно, включает газовый вентиль и зажигает горелку отопительной системы. По истечении одиночного импульса горелка выключается, несмотря на состояние выхода операционного усилителя. Постоянная времени таймера 555 компенсирует задержки в системе, при которой нагрев выключается, прежде чем датчик AD590 достигает точки переключения. Позистор, включенный во времязадающую цепь одновибратора"555, компенсирует изменения постоянной времени таймера из-за изменений температуры окружающей среды. При включении питания во время процесса запуска системы сигнал, формируемый операционным усилителем AD741, минует таймер и включает нагрев отопительной системы, при этом схема имеет одно устойчивое состояние.


Рисунок 1.24 Коррекция перегрузки

Все компоненты терморегулятора находятся на корпусе кварцевого резонатора (рис. 1.25), таким образом, максимальная рассеиваемая мощность резисторов 2 Вт служит для того, чтобы поддерживать температуру в кварце. Позистор имеет при комнатной температуре сопротивление около 1 кОм. Типы транзистора некритичны, но должны иметь низкие токи утечки. Ток позистора примерно от 1 мА должен быть гораздо больше, чем ток базы 0,1 мА транзистора Q1. Если в качестве Q2 выбрать кремниевый транзистор, то нужно повысить 150-омное сопротивление до 680 Ом.


Рисунок 1.25

В мостовой схеме регулятора (рис. 1.26) используется платиновый датчик. Сигнал с моста снимается операционным усилителем AD301, который включен как дифференциальный усилитель-компаратор. В холодном состоянии сопротивление датчика менее 500 Ом, при этом выход операционного усилителя приходит в насыщение и дает положительный сигнал на выходе, который открывает мощный транзистор и нагревательный элемент начинает греться. По мере нагревания элемента растет и сопротивление датчика, которое возвращает мост в состояние уравновешивания, и нагрев выключается. Точность достигает 0,01 °С.


Рисунок 1.26 Регулятор температуры на компараторе

Используется во многих технологических процессах, в том числе и для бытовых отопительных систем. Фактором определяющим действие терморегулятора, является наружная температура, значение которой анализируется и при достижении установленного предела, расход сокращается либо увеличивается.

Терморегуляторы бывают различного исполнения и сегодня в продаже достаточно много промышленных версий, работающих по различному принципу и предназначенных для использования в разных областях. Также доступны и простейшие электронные схемы, собрать которые может любой, при наличии соответствующих познаний в электронике.

Описание

Терморегулятор представляет собой устройство, устанавливаемое в системах энергоснабжения и позволяющее оптимизировать затраты энергии на обогрев. Основные элементы терморегулятора:

  1. Температурные датчики – контролируют уровень температуры, формируя электрические импульсы соответствующей величины.
  2. Аналитический блок – обрабатывает электрические сигналы поступающие от датчиков и производит конвертацию значения температуры в величину, характеризующую положение исполнительного органа.
  3. Исполнительный орган – регулирует подачу, на величину указанную аналитическим блоком.

Современный терморегулятор – это микросхема на основе диодов, триодов или стабилитрона, могущих преобразовывать энергию тепла в электрическую. Как в промышленном, так и самодельном варианте, это единый блок, к которому подключается термопара, выносная или располагаемая здесь же. Терморегулятор включается последовательно в электрическую цепь питания исполняющего органа, таким образом, уменьшая или увеличивая значение питающего напряжения.

Принцип работы

Датчик температуры подает электрические импульсы, величина тока которых зависит от уровня температуры. Заложенное соотношение этих величин позволяет устройству очень точно определить температурный порог и принять решение, например, на сколько градусов должна быть открыта заслонка подачи воздуха в твердотопливный котел, либо открыта задвижка подачи горячей воды. Суть работы терморегулятора заключается в преобразовании одной величины в другую и соотнесении результата с уровнем силы тока.

Простые самодельные регуляторы, как правило, имеют механическое управление в виде резистора, передвигая который, пользователь устанавливает необходимый температурный порог срабатывания, то есть, указывая, при какой наружной температуре необходимо будет увеличить подачу. Имеющие более расширенный функционал, промышленные приборы, могут программироваться на более широкие пределы, при помощи контроллера, в зависимости от различных диапазонов температуры. У них отсутствуют механические элементы управления, что способствует долгой работе.

Как сделать своими руками

Сделанные собственноручно регуляторы получили широкое применение в бытовых условиях, тем более, что необходимые электронные детали и схемы всегда можно найти. Подогрев воды в аквариуме, включение вентилирования помещения при повышении температуры и многие другие несложные технологические операции вполне можно переложить на такую автоматику.

Схемы авторегуляторов

В настоящее время, у любителей самодельной электроники, популярностью пользуются две схемы автоматического управления:

  1. На основе регулируемого стабилитрона типа TL431 – принцип работы состоит в фиксации превышения порога напряжения в 2,5 вольт. Когда на управляющем электроде он будет пробит, стабилитрон приходит в открытое положение и через него проходит нагрузочный ток. В том случае, когда напряжение не пробивает порог в 2,5 вольт, схема приходит в закрытое положение и отключает нагрузку. Достоинство схемы в предельной простоте и высокой надежности, так как стабилитрон оснащается только одним входом, для подачи регулируемого напряжения.
  2. Тиристорная микросхема типа К561ЛА7, либо ее современный зарубежный аналог CD4011B – основным элементом является тиристор Т122 или КУ202, выполняющий роль мощного коммутирующего звена. Потребляемый схемой ток в нормальном режиме не превышает 5 мА, при температуре резистора от 60 до 70 градусов. Транзистор приходит в открытое положение при поступлении импульсов, что в свою очередь является сигналом для открытия тиристора. При отсутствии радиатора, последний приобретает пропускную способность до 200 Вт. Для увеличения этого порога, понадобится установка более мощного тиристора, либо оснащение уже имеющегося радиатором, что позволит довести коммутируемую способность до 1 кВт.

Необходимые материалы и инструменты

Сборка самостоятельно не займет много времени, однако обязательно потребуются некоторые знания в области электроники и электротехники, а также опыт работы с паяльником. Для работы необходимо следующее:

  • Паяльник импульсный или обычный с тонким нагревательным элементом.
  • Печатная плата.
  • Припой и флюс.
  • Кислота для вытравливания дорожек.
  • Электронные детали согласно выбранной схемы.

Схема терморегулятора

Пошаговое руководство

  1. Электронные элементы необходимо разместить на плате с таким расчетом, чтобы их легко было монтировать, не задевая паяльником соседние, возле деталей активно выделяющих тепло, расстояние делают несколько большим.
  2. Дорожки между элементами протравливаются согласно рисунку, если такого нет, то предварительно выполняется эскиз на бумаге.
  3. Обязательно проверяется работоспособность каждого элемента и только после этого выполняется посадка на плату с последующим припаиванием к дорожкам.
  4. Необходимо проверять полярность диодов, триодов и других деталей в соответствии со схемой.
  5. Для пайки радиодеталей не рекомендуется использовать кислоту, поскольку она может закоротить близкорасположенные соседние дорожки, для изоляции, в пространство между ними добавляется канифоль.
  6. После сборки, выполняется регулировка устройства, путем подбора оптимального резистора для максимально точного порога открывания и закрывания тиристора.

Область применения самодельных терморегуляторов

В быту, применение терморегулятора встречается чаще всего у дачников, эксплуатирующих самодельные инкубаторы и как показывает практика, они не менее эффективны, чем заводские модели. По сути, использовать такое устройство можно везде, где необходимо произвести какие-то действия зависящие от показаний температуры. Аналогично можно оснастить автоматикой систему опрыскивания газона или полива, выдвижения светозащитных конструкций или просто звуковую, либо световую сигнализацию, предупреждающую о чем-либо.


Ремонт своими руками

Собранные собственноручно, эти приборы служат достаточно долго, однако существует несколько стандартных ситуаций, когда может потребоваться ремонт:

  • Выход из строя регулировочного резистора – случается наиболее часто, поскольку изнашиваются медные дорожки, внутри элемента, по которым скользит электрод, решается заменой детали.
  • Перегрев тиристора или триода – неправильно была подобрана мощность или прибор находится в плохо вентилируемой зоне помещения. Чтобы в дальнейшем избежать подобного, тиристоры оборудуются радиаторами, либо же следует переместить терморегулятор в зону с нейтральным микроклиматом, что особенно актуально для влажных помещений.
  • Некорректная регулировка температуры – возможно повреждение терморезистора, коррозия или грязь на измерительных электродах.

Преимущества и недостатки

Несомненно, использование автоматического регулирования, уже само по себе является преимуществом, так как потребитель энергии получает такие возможности:

  • Экономия энергоресурсов.
  • Постоянная комфортная температура в помещении.
  • Не требуется участие человека.

Автоматическое управление нашло особенно большое применение в системах отопления многоквартирных домов. Оборудуемые терморегуляторами вводные задвижки автоматически управляют подачей теплоносителя, благодаря чему жители получают значительно меньшие счета.

Недостатком такого прибора можно считать его стоимость, что впрочем, не относится к тем, что изготовлены своими руками. Дорогостоящими являются только устройства промышленного исполнения, предназначенные для регулирования подачи жидких и газообразных сред, так как исполнительный механизм включает в себя специальный двигатель и другую запорную арматуру.

Хотя сам прибор достаточно нетребователен к условиям эксплуатации, точность реагирования зависит от качества первичного сигнала и особенно это касается автоматики работающей в условиях повышенной влажности или контактирующей с агрессивными средами. Термодатчики в таких случаях, не должны контактировать с теплоносителем напрямую.

Выводы закладываются в гильзу из латуни, и герметично запаиваются эпоксидным клеем. Оставить на поверхности можно торец терморезистора, что будет способствовать большей чувствительности.

В быту и подсобном хозяйстве часто требуется поддерживать температурный режим какого-либо помещения. Ранее для этого требовалась достаточно огромная схема, выполненная на аналоговых элементах, одну такую мы рассмотрим для общего развития. Сегодня все намного проще, если возникает необходимо поддерживать температуру в диапазоне от -55 до +125°C, то с поставленной целью может отлично справиться программируемый термометр и термостат DS1821.


Схема терморегулятора на специализированном температурном датчике. Этот термодатчик DS1821 можно дешево купить в АЛИ Экспресс (для заказа кликните на рисунок чуть выше)

Порог температуры включения и отключения термостата задается значениями TH и TL в памяти датчика, которые требуется запрограммировать в DS1821. В случае превышения температуры выше значения записанного в ячейку TH на выходе датчика появится уровень логической единицы. Для защиты от возможных помех, схема управления нагрузкой реализована так, что первый транзистор запирается в ту полуволну сетевого напряжения, когда оно равно нулю, подавая тем самым напряжение смещения на затвор второго полевого транзистора, который включает оптосимистор, а тот уже открывает смистор VS1 управляющий нагрузкой. В качестве нагрузки может быть любое устройство, например электродвигатель или обогреватель. Надежность запирания первого транзистора нужно настроить путем подбора нужного номинала резистора R5.

Датчик температуры DS1820 способен фиксировать температуру от -55 до 125 градусов и работать в режиме термостата.


Схема терморегулятора на датчике DS1820

Если температуры превысит верхний порог TH, то на выходе DS1820 будет логическая единица, нагрузка отключится сети. Если температура опустится ниже нижнего запрограммированного уровня TL то на выходе температурного датчика появится логический ноль и нагрузка будет включена. Если остались непонятные моменты, самодельная конструкция была позаимствована из №2 за 2006 год.

Сигнал с датчика проходит на прямой вывод компаратора на операционном усилителе CA3130. На инвертирующий вход этого же ОУ, поступает опорное напряжение с делителя. Переменным сопротивлением R4 задают требуемый температурный режим.


Схема терморегулятора на датчике LM35

Если на прямом входе потенциал ниже установленного на выводе 2, то на выходе компаратора будем иметь уровень, около 0,65 вольта, а если наоборот, то на выходе компаратора получим высокий уровень около 2,2 вольта. Сигнал с выхода ОУ через транзисторы управляет работой электромагнитного реле. При высоком уровне оно включается, а при низком выключается, коммутируя своими контактами нагрузку.

TL431 - это программируемый стабилитрон. Используется в роли источника опорного напряжения и источника питания для схем с малым потреблением. Требуемый уровень напряжения, на управляющем выводе микросборки TL431, задается с помощью делителя на резисторах Rl, R2 и терморезисторе с отрицательным ТКС R3.

Если на управляющем выводе TL431 напряжение выше 2,5В, микросхема пропускает ток и включает электромагнитное реле. Реле коммутирует управляющий вывод симистора и подключает нагрузку. С увеличением температуры, сопротивление термистора и потенциал на управляющем контакте TL431 снижается ниже 2,5В, реле отпускает свои фронтовые контакты и отключает обогреватель.

С помощью сопротивления R1 регулируем уровень нужной температуры, для включения обогревателя. Данная схема способна управлять нагревательным элементом до 1500 Вт. Реле подойдет РЭС55А с рабочим напряжением 10…12 В или его аналог.

Конструкция аналогового терморегулятора используется для поддержания заданной температуры внутри инкубатора, или в ящике на балконе для хранения овощей зимой. Питание организовано от автомобильного аккумулятора на 12 вольт.

Конструкция состоит из реле в случае падения температуры и отключает при повышении заложенного порога.


Температура, срабатывания реле термостата задается уровнем напряжения на контактах 5 и 6 микросхемы К561ЛЕ5, а температура отключения реле - потенциалом на выводах 1 и 21. Разницу температур контролируется падением напряжения на резисторе R3. В роли температурного датчика R4 используется терморезистор с отрицательным ТКС, т.е .

Конструкция небольшая и состоит всего из двух блоков- измерительного на базе компаратора на ОУ 554СА3 и коммутатора нагрузки до 1000 Вт построенного на регуляторе мощности КР1182ПМ1.

На третий прямой вход ОУ поступает постоянное напряжение с делителя напряжения состоящего из сопротивлений R3 и R4. На четвертый инверсный вход подается напряжение с другого делителя на сопротивлении R1 и терморезистор ММТ-4 R2.


Датчиком температуры является терморезистор находящейся в стеклянной колбе с песком, которую располагают в аквариуме. Главным узлом конструкции является м/с К554САЗ - компаратор напряжения.

От делителя напряжений в состав которого входит и терморезистор, управляющее напряжение идет на прямой вход компаратора. Другой вход компаратора используется для регулировки требуемой температуры. Из сопротивлений R3, R4, R5 выполнен делитель напряжения, который образуют чувствительный к изменениям температуры мост. При изменяется температуры воды в аквариуме, сопротивление терморезистора тоже меняется. Это создает дисбаланс напряжений на входах компаратора.

В зависимости от разности напряжений на входах будет изменяться выходное состояние компаратора. Нагреватель сделан так, что при снижении температуры воды терморегулятор аквариума автоматически запускался, а при повышении, наоборот выключался. Компаратор имеет два выхода, коллекторный и эмиттерный. Для управления полевым транзистором требуется положительное напряжение, поэтому, именно коллекторный выход компаратора подключен к плюсовой линии схемы. Управляющий сигнал получается с эмиттерного вывода. Сопротивления R6 и R7 являются выходной нагрузки компаратора.

Для включения и выключения нагревательного элемента в терморегуляторе использован полевой транзистор IRF840. Для разряда затвора транзистора присутствует диод VD1.

В схеме терморегулятора использован бестрансформаторный блок питания. Лишнее переменное напряжение уменьшается за счет реактивного сопротивления емкости С4.

Основа первой конструкции терморегулятора - микроконтроллер PIC16F84A с датчик температуры DS1621 обладающим интерфейс l2C. В момент включения питания, микроконтроллер сначала инициализирует внутренние регистры температурного датчика, а затем проводит его настройку. Терморегулятор на микроконтроллере во втором случае выполнен уже на PIC16F628 с датчиком DS1820 и управляет подключенной нагрузкой с помощью контактов реле.


Датчик температуры своими руками

Зависимость падения напряжения на p-n переходе полупроводников от температуры, как нельзя лучше подходит для создания нашего самодельного датчика.



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...