Какой способ кодирования от алкоголизма лучше. Методы кодирования алкоголизма: как происходит лечение

Код - система условных знаков (символов) для передачи, обработки и хранения информации (сообщения).

Кодирование - процесс представления информации (сообщения) в виде кода.

Все множество символов, используемых для кодирования, называется алфавитом кодирования . Например, в памяти компьютера любая информация кодируется с помощью двоичного алфавита, содержащего всего два символа: 0 и 1.

Научные основы кодирования были описаны К.Шенноном, который исследовал процессы передачи информации по техническим каналам связи (теория связи , теория кодирования ). При таком подходе кодирование понимается в более узком смысле: как переход от представления информации в одной символьной системе к представлению в другой символьной системе . Например, преобразование письменного русского текста в код азбуки Морзе для передачи его по телеграфной связи или радиосвязи. Такое кодирование связано с потребностью приспособить код к используемым техническим средствам работы с информацией.

Декодирование - процесс обратного преобразования кода к форме исходной символьной системы , т.е. получение исходного сообщения. Например: перевод с азбуки Морзе в письменный текст на русском языке.

В более широком смысле декодирование - это процесс восстановления содержания закодированного сообщения. При таком подходе процесс записи текста с помощью русского алфавита можно рассматривать в качестве кодирования, а его чтение - это декодирование.

Цели кодирования и способы кодирования

Способ кодирования одного и того же сообщения может быть разным. Например, русский текст мы привыкли записывать с помощью русского алфавита. Но то же самое можно сделать, используя английский алфавит. Иногда так приходится поступать, посылая SMS по мобильному телефону, на котором нет русских букв, или отправляя электронное письмо на русском языке из-за границы, если на компьютере нет русифицированного программного обеспечения. Например, фразу: “Здравствуй, дорогой Саша!” приходится писать так: “Zdravstvui, dorogoi Sasha!”.

Существуют и другие способы кодирования речи. Например, стенография - быстрый способ записи устной речи . Ею владеют лишь немногие специально обученные люди - стенографисты. Стенографист успевает записывать текст синхронно с речью говорящего человека. В стенограмме один значок обозначал целое слово или словосочетание. Расшифровать (декодировать) стенограмму может только стенографист.

Приведенные примеры иллюстрируют следующее важное правило: для кодирования одной и той же информации могут быть использованы разные способы; их выбор зависит от ряда обстоятельств: цели кодирования, условий, имеющихся средств. Если надо записать текст в темпе речи - используем стенографию; если надо передать текст за границу - используем английский алфавит; если надо представить текст в виде, понятном для грамотного русского человека, - записываем его по правилам грамматики русского языка.

Еще одно важное обстоятельство: выбор способа кодирования информации может быть связан с предполагаемым способом ее обработки . Покажем это на примере представления чисел - количественной информации. Используя русский алфавит, можно записать число “тридцать пять”. Используя же алфавит арабской десятичной системы счисления, пишем: “35”. Второй способ не только короче первого, но и удобнее для выполнения вычислений. Какая запись удобнее для выполнения расчетов: “тридцать пять умножить на сто двадцать семь” или “35 х 127”? Очевидно - вторая.

Однако если важно сохранить число без искажения, то его лучше записать в текстовой форме. Например, в денежных документах часто сумму записывают в текстовой форме: “триста семьдесят пять руб.” вместо “375 руб.”. Во втором случае искажение одной цифры изменит все значение. При использовании текстовой формы даже грамматические ошибки могут не изменить смысла. Например, малограмотный человек написал: “Тристо семдесять пят руб.”. Однако смысл сохранился.

В некоторых случаях возникает потребность засекречивания текста сообщения или документа, для того чтобы его не смогли прочитать те, кому не положено. Это называется защитой от несанкционированного доступа . В таком случае секретный текст шифруется. В давние времена шифрование называлось тайнописью. Шифрование представляет собой процесс превращения открытого текста в зашифрованный, а дешифрование - процесс обратного преобразования, при котором восстанавливается исходный текст. Шифрование - это тоже кодирование, но с засекреченным методом, известным только источнику и адресату. Методами шифрования занимается наука под названием криптография .

3. Кодирование графической информации4

4. Кодирование звуковой информации8

5. Заключение10

Список литературы11

Введение

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. Все эти виды информации в компьютере представлены в двоичном коде, т. е. используется алфавит мощностью два (всего два символа 0 и 1). Связано это с тем, что удобно представлять информацию в виде последовательности электрических импульсов: импульс отсутствует (0), импульс есть (1). Такое кодирование принято называть двоичным, а сами логические последовательности нулей и единиц - машинным языком. Каждая цифра машинного двоичного кода несет количество информации равное одному биту. Данный вывод можно сделать, рассматривая цифры машинного алфавита, как равновероятные события. При записи двоичной цифры можно реализовать выбор только одного из двух возможных состояний, а, значит, она несет количество информации равное 1 бит. Следовательно, две цифры несут информацию 2 бита, четыре разряда --4 бита и т. д. Чтобы определить количество информации в битах, достаточно определить количество цифр в двоичном машинном коде.

Кодирование текстовой информации

В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту, т. е. I = 1 байт = 8 бит. При помощи формулы, которая связывает между собой количество возможных событий К и количество информации I, можно вычислить сколько различных символов можно закодировать (считая, что символы - это возможные события): К = 2I = 28 = 256, т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

В настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой кодировке. Наглядно это можно представить в виде фрагмента объединенной таблицы кодировки символов. Одному и тому же двоичному коду ставится в соответствие различные символы.

Двоичный код

Десятичный код

Впрочем, в большинстве случаев о перекодировке текстовых документов заботится на пользователь, а специальные программы - конверторы, которые встроены в приложения. Начиная с 1997 г. последние версии Microsoft Windows&Office поддерживают новую кодировку Unicode, которая на каждый символ отводит по 2 байта, а, поэтому, можно закодировать не 256 символов, а 65536 различных символов.

Чтобы определить числовой код символа можно или воспользоваться кодовой таблицей, или, работая в текстовом редакторе Word 6.0 / 95. Для этого в меню нужно выбрать пункт "Вставка" - "Символ", после чего на экране появляется диалоговая панель Символ. В диалоговом окне появляется таблица символов для выбранного шрифта. Символы в этой таблице располагаются построчно, последовательно слева направо, начиная с символа Пробел (левый верхний угол) и, кончая, буквой "я" (правый нижний угол).

Для определения числового кода символа в кодировке Windows (СР1251) нужно при помощи мыши или клавиш управления курсором выбрать нужный символ, затем щелкнуть по кнопке Клавиша. После этого на экране появляется диалоговая панель Настройка, в которой в нижнем левом углу содержится десятичный числовой код выбранного символа.

Кодирование графической информации

Графическую информацию можно представлять в двух формах: аналоговой или дискретной. Живописное полотно, цвет которого изменяется непрерывно - это пример аналогового представления, а изображение, напечатанное при помощи струйного принтера и состоящее из отдельных точек разного цвета - это дискретное представление. Путем разбиения графического изображения (дискретизации) происходит преобразование графической информации из аналоговой формы в дискретную. При этом производится кодирование - присвоение каждому элементу конкретного значения в форме кода. При кодировании изображения происходит его пространственная дискретизация. Ее можно сравнить с построением изображения из большого количества маленьких цветных фрагментов (метод мозаики). Все изображение разбивается на отдельные точки, каждому элементу ставится в соответствие код его цвета.

При этом качество кодирования будет зависеть от следующих параметров: размера точки и количества используемых цветов. Чем меньше размер точки, а, значит, изображение составляется из большего количества точек, тем выше качество кодирования. Чем большее количество цветов используется (т. е. точка изображения может принимать больше возможных состояний), тем больше информации несет каждая точка, а, значит, увеличивается качество кодирования. Создание и хранение графических объектов возможно в нескольких видах - в виде векторного, фрактального или растрового изображения. Отдельным предметом считается 3D (трехмерная) графика, в которой сочетаются векторный и растровый способы формирования изображений. Она изучает методы и приемы построения объемных моделей объектов в виртуальном пространстве. Для каждого вида используется свой способ кодирования графической информации.

Растровое изображение. При помощи увеличительного стекла можно увидеть, что черно-белое графическое изображение, например из газеты, состоит из мельчайших точек, составляющих определенный узор - растр. Во Франции в 19 веке возникло новое направление в живописи - пуантилизм. Его техника заключалась в том, что на холст рисунок наносился кистью в виде разноцветных точек. Также этот метод издавна применяется в полиграфии для кодирования графической информации. Точность передачи рисунка зависит от количества точек и их размера. После разбиения рисунка на точки, начиная с левого угла, двигаясь по строкам слева направо, можно кодировать цвет каждой точки. Далее одну такую точку будем называть пикселем (происхождение этого слова связано с английской аббревиатурой "picture element" - элемент рисунка). Объем растрового изображения определяется умножением количества пикселей (на информационный объем одной точки, который зависит от количества возможных цветов. Качество изображения определяется разрешающей способностью монитора. Чем она выше, то есть больше количество строк растра и точек в строке, тем выше качество изображения. В современных ПК в основном используют следующие разрешающие способности экрана: 640 на 480, 800 на 600, 1024 на 768 и 1280 на 1024 точки. Так как яркость каждой точки и ее линейные координаты можно выразить с помощью целых чисел, то можно сказать, что этот метод кодирования позволяет использовать двоичный код для того чтобы обрабатывать графические данные.

Если говорить о черно-белых иллюстрациях, то, если не использовать полутона, то пиксель будет принимать одно из двух состояний: светится (белый) и не светится (черный). А так как информация о цвете пикселя называется кодом пикселя, то для его кодирования достаточно одного бита памяти: 0 - черный, 1 - белый. Если же рассматриваются иллюстрации в виде комбинации точек с 256 градациями серого цвета (а именно такие в настоящее время общеприняты), то достаточно восьмиразрядного двоичного числа для того чтобы закодировать яркость любой точки. В компьютерной графике чрезвычайно важен цвет. Он выступает как средство усиления зрительного впечатления и повышения информационной насыщенности изображения. Как формируется ощущение цвета человеческим мозгом? Это происходит в результате анализа светового потока, попадающего на сетчатку глаза от отражающих или излучающих объектов.

Цветовые модели. Если говорить о кодировании цветных графических изображений, то нужно рассмотреть принцип декомпозиции произвольного цвета на основные составляющие. Применяют несколько систем кодирования: HSB, RGB и CMYK. Первая цветовая модель проста и интуитивно понятна, т. е. удобна для человека, вторая наиболее удобна для компьютера, а последняя модель CMYK-для типографий. Использование этих цветовых моделей связано с тем, что световой поток может формироваться излучениями, представляющими собой комбинацию " чистых" спектральных цветов: красного, зеленого, синего или их производных. Различают аддитивное цветовоспроизведение (характерно для излучающих объектов) и субтрактивное цветовоспроизведение (характерно для отражающих объектов). В качестве примера объекта первого типа можно привести электронно-лучевую трубку монитора, второго типа - полиграфический отпечаток.

1) Модель HSB характеризуется тремя компонентами: оттенок цвета(Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness).

2) Принцип метода RGB заключается в следующем: известно, что любой цвет можно представить в виде комбинации трех цветов: красного (Red, R), зеленого (Green, G), синего (Blue, B). Другие цвета и их оттенки получаются за счет наличия или отсутствия этих составляющих.

3) Принцип метода CMYK. Эта цветовая модель используется при подготовке публикаций к печати. Каждому из основных цветов ставится в соответствие дополнительный цвет (дополняющий основной до белого). Получают дополнительный цвет за счет суммирования пары остальных основных цветов.

Различают несколько режимов представления цветной графики: полноцветный (True Color); High Color; индексный.

При полноцветном режиме для кодирования яркости каждой из составляющих используют по 256 значений (восемь двоичных разрядов), то есть на кодирование цвета одного пикселя (в системе RGB) надо затратить 8*3=24 разряда. Это позволяет однозначно определять 16,5 млн цветов. Это довольно близко к чувствительности человеческого глаза. При кодировании с помощью системы CMYK для представления цветной графики надо иметь 8*4=32 двоичных разряда. Режим High Color - это кодирование при помощи 16-разрядных двоичных чисел, то есть уменьшается количестко двоичных разрядов при кодировании каждой точки. Но при этом значительно уменьшается диапазон кодируемых цветов. При индексном кодировании цвета можно передать всго лишь 256 цветовых оттенков. Каждый цвет кодируется при помощи восьми бит данных. Но так как 256 значений не передают весь диапазон цветов, доступный человеческому глазу, то подразумевается, что к графическим данным прилагается палитра (справочная таблица), без которой воспроизведение будет неадекватным: море может получиться красным, а листья - синими. Сам код точки растра в данном случае означает не сам по себе цвет, а только его номер (индекс) в палитре. Отсюда и название режима - индексный.

Соответствие между количеством отображаемых цветов (К) и количеством бит для их кодировки (а) находиться по формуле: К = 2 а.

Достаточно для…

Рисованных изображений типа тех, что видим в мультфильмах, но недостаточно для изображений живой природы

Изображений, которые на картинках в журналах и на фотографиях

224 = 16 777 216

Обработки и передачи изображений, не уступающих по качеству наблюдаемым в живой природе

Двоичный код изображения, выводимого на экран, хранится в видеопамяти. Видеопамять - это электронное энергозависимое запоминающее устройство. Размер видеопамяти зависит от разрешающей способности дисплея и количества цветов. Но ее минимальный объем определяется так, чтобы поместился один кадр (одна страница) изображения, т.е. как результат произведения разрешающей способности на размер кода пикселя.

Vmin = M * N * a.

Двоичный код восьмицветной палитры.

Цвет Составляющие

Красный 1 0 0

Зеленый 0 1 0

Синий 0 0 1

Голубой 0 1 1

Пурпурный 1 0 1

Желтый 1 1 0

Белый 1 1 1

Черный 0 0 0

Шестнадцатицветная палитра позволяет увеличить количество используемых цветов. Здесь будет использоваться 4-разрядная кодировка пикселя: 3 бита основных цветов + 1 бит интенсивности. Последний управляет яркостью трех базовых цветов одновременно (интенсивностью трех электронных пучков). При раздельном управлении интенсивностью основных цветов количество получаемых цветов увеличивается. Так для получения палитры при глубине цвета в 24 бита на каждый цвет выделяется по 8 бит, то есть возможны 256 уровней интенсивности (К = 28).

Векторное изображение - это графический объект, состоящий из элементарных отрезков и дуг. Базовым элементом изоражения является линия. Как и любой объект, она обладает свойствами: формой (прямая, кривая), толщиной., цветом, начертанием (пунктирная, сплошная). Замкнутые линии имеют свойство заполнения (или другими объектами, или выбранным цветом). Все прочие объекты векторной графики составляются из линий. Так как линия описывается математически как единый объект, то и объем данных для отображения объекта средствами векторной графики значительно меньше, чем в растровой графике. Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

К программным средствам создания и обработки векторной графики относятся следующие ГР: CorelDraw, Adobe Illustrator, а также векторизаторы (трассировщики) - специализированные пакеты преобразования растровых изображений в векторные.

Фрактальная графика основывается на математических вычислениях, как и векторная. Но в отличии от векторной ее базовым элементом является сама математическая формула. Это приводит к тому, что в памяти компьютера не хранится никаких объектов и изображение строится только по уравнениям. При помощи этого способа можно строить простейшие регулярные структуры, а также сложные иллюстрации, которые иммитируют ландшафты.

Кодирование звуковой информации

Компьютер широко применяют в настоящее время в различных сферах. Не стала исключением и обработка звуковой информации, музыка. До 1983 года все записи музыки выходили на виниловых пластинках и компакт-кассетах. В настоящее время широкое распространение получили компакт-диски. Если имеется компьютер, на котором установлена студийная звуковая плата, с подключенными к ней MIDI-клавиатурой и микрофоном, то можно работать со специализированным музыкальным программным обеспечением. Условно его можно разбить на несколько видов: 1) всевозможные служебные программы и драйверы, предназначенные для работы с конкретными звуковыми платами и внешними устройствами; 2) аудиоредакторы, которые предназначены для работы со звуковыми файлами, позволяют производить с ними любые операции - от разбиения на части до обработки эффектами; 3) программные синтезаторы, которые появились сравнительно недавно и корректно работают только на мощных компьютерах. Они позволяют экспериментировать с созданием различных звуков; и другие.

К первой группе относятся все служебные программы операционной системы. Так, например, win 95 и 98 имеют свои собственные программы микшеры и утилиты для воспроизведения/записи звука, проигрывания компакт-дисков и стандартных MIDI - файлов. Установив звуковую плату можно при помощи этих программ проверить ее работоспособность. Например, программа Фонограф предназначена для работы с wave-файлами (файлы звукозаписи в формате Windows). Эти файлы имеют расширение.WAV. Эта программа предоставляет возможность воспроизводить, записывать и редактировать звукозапись приемами, аналогичными приемам работы с магнитофоном. Желательно для работы с Фонографом подключить микрофон к компьютеру. Если необходимо сделать звукозапись, то нужно определиться с качеством звука, так как именно от нее зависит продолжительность звукозаписи. Возможная продолжительность звучания тем меньше, чем выше качество записи. При среднем качестве записи можно удовлетворительно записывать речь, создавая файлы продолжительностью звучания до 60 секунд. Примерно 6 секунд будет продолжительность записи, имеющая качество музыкального компакт - диска.

Для того чтобы записать звук на какой-нибудь носитель его нужно преобразовать в электрический сигнал. Это делается с помощью микрофона. Самые простые микрофоны имеют мембрану, которая колеблется под воздействием звуковых волн. К мембране присоединена катушка, перемещающаяся синхронно с мембраной в магнитном поле. В катушке возникает переменный электрический ток. Изменения напряжения тока точно отражают звуковые волны. Переменный электрический ток, который появляется на выходе микрофона, называется аналоговым сигналом. Применительно к электрическому сигналу «аналоговый» обозначает, что этот сигнал непрерывен по времени и амплитуде. Он точно отражает форму звуковой волны, которая распространяется в воздухе.

Звуковую информацию можно представить в дискретной или аналоговой форме. Их отличие в том, что при дискретном представлении информации физическая величина изменяется скачкообразно («лесенкой»), принимая конечное множество значений. Если же информацию представить в аналоговой форме, то физическая величина может принимать бесконечное количество значений, непрерывно изменяющихся.

Кратко рассмотрим процессы преобразования звука из аналоговой формы в цифровую и наоборот. Примерное представление о том, что происходит в звуковой карте, может помочь избежать некоторых ошибок при работе со звуком. Звуковые волны при помощи микрофона превращаются в аналоговый переменный электрический сигнал. Он проходит через звуковой тракт и попадает в аналого-цифровой преобразователь (АЦП) - устройство, которое переводит сигнал в цифровую форму. В упрощенном виде принцип работы АЦП заключается в следующем: он измеряет через определенные промежутки времени амплитуду сигнала и передает дальше, уже по цифровому тракту, последовательность чисел, несущих информацию об изменениях амплитуды. Вывод цифрового звука происходит при помощи цифро-аналогового преобразователя (ЦАП), который на основании поступающих цифровых данных в соответствующие моменты времени генерирует электрический сигнал необходимой амплитуды.

Если в виде графика представить один и тот же звук высотой 1 кГц (нота до седьмой октавы фортепиано примерно соответствует этой частоте), но семплированный с разной частотой (нижняя часть синусоиды не показана на всех графиках), то будут видны различия. Одно деление на горизонтальной оси, которая показывает время, соответствует 10 семплам. Масштаб взят одинаковый см. приложения рисунок 1.13). Можно видеть, что на частоте 11 кГц примерно пять колебаний звуковой волны приходится на каждые 50 семплов, то есть один период синусоиды отображается всего при помощи 10 значений. Это довольно неточная передача. В то же время, если рассматривать частоту оцифровки 44 кГц, то на каждый период синусоиды приходится уже почти 50 семплов. Это позволяет получить сигнал хорошего качества.

Разрядность указывает с какой точностью происходят изменения амплитуды аналогового сигнала. Точность, с которой при оцифровке передается значение амплитуды сигнала в каждый из моментов времени, определяет качество сигнала после цифро-аналогового преобразования. Именно от разрядности зависит достоверность восстановления формы волны.

Для кодирования значения амплитуды используют принцип двоичного кодирования. Звуковой сигнал должен быть представленным в виде последовательности электрических импульсов (двоичных нулей и единиц). Обычно используют 8, 16-битное или 20-битное представление значений амплитуды. При двоичном кодировании непрерывного звукового сигнала его заменяют последовательностью дискретных уровней сигнала. От частоты дискретизации (количества измерений уровня сигнала в единицу времени) зависит качество кодирования. С увеличением частоты дискретизации увеличивается точность двоичного представления информации. При частоте 8 кГц (количество измерений в секунду 8000) качество семплированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц (количество измерений в секунду 48000) - качеству звучания аудио- CD.

Если использовать 8-битное кодирование, то можно достичь точность изменения амплитуды аналогового сигнала до 1/256 от динамического диапазона цифрового устройства (28 = 256).

Если использовать 16-битное кодирование для представления значений амплитуды звукового сигнала, то точность измерения возрастет в 256 раз.

В современных преобразователях принято использовать 20-битное кодирование сигнала, что позволяет получать высококачественную оцифровку звука.

Заключение

Код — это набор условных обозначений (или сигналов) для записи (или передачи) некоторых заранее определенных понятий.

Кодирование информации - это процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» часто понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Обычно каждый образ при кодировании представлении отдельным знаком. Знак - это элемент конечного множества отличных друг от друга элементов. Знак вместе с его смыслом называют символом. Длиной кода называется такое количество знаков, которое используется при кодировании.

Код может быть постоянной и непостоянной длины. Для представления информации в памяти ЭВМ используется двоичный способ кодирования.

Элементарная ячейка памяти ЭВМ имеет длину 8 бит. Каждый байт имеет свой номер. Наибольшую последовательность бит, которую ЭВМ может обрабатывать как единое целое, называют машинным словом. Длина машинного слова зависит от разрядности процессора и может быть равной 16, 32 битам и т.д. Другой способ представления целых чисел — дополнительный код. Диапазон значений величин зависит от количества бит памяти, отведенных для их хранения. Дополнительный код положительного числа совпадает с его прямым кодом.

Список литературы

1.Информатика и информационные технологии. Под ред. Ю.Д. Романовой, 3-е издание, М.: ЭКСМО, 2008

2.Костров Б. В. Основы цифровой передачи и кодирования информации. - ТехБук, 2007 г., 192 стр.

3.Макарова Н. В. «Информатика»: Учебник. - М.: Финансы и статистика, 2005 г. - 768 с.

4.Степаненко О. С. Персональный компьютер. Самоучитель Диалектика. 2005, 28 стр.

Cтраница 1


Способы кодирования и передачи информации в различных системах различны. Например, в отечественной системе АТСК для этой цели используют быстродействующий многочастотный код. Каждая цифра абонентского номера передается из регистра в маркер по разговорным проводам кратковременной посылкой токов двух из шести заданных ча-етот. Таким образом, с помощью различных комбинаций двух частот из шести обеспечивается возможность передачи любой Цифры, содержащейся в абонентском номере, зафиксированном в приемнике информации. По окончании соединения в пределах всего коммутируемого тракта регистр отключается и может устанавливать новое соединение.  

Способы кодирования числовой информации - способы счета и представления чисел - в истории человечества последовательно менялись. Следы древних систем счета и представления чисел встречаются и сегодня в культуре и обычаях многих народов. К древнему Вавилону восходит деление часа на 60 минут и угла на 360 градусов. Например, часто пишут XIX век, XX век вместо 19 век и 20 век. К англосаксам - жителям Британских островов - восходит традиция счета дюжинами: в году 12 месяцев, в футе 12 дюймов, сутки делятся на два периода по 12 часов.  

Способы кодирования десятичной информации определяются тлпом выбранных для ее хранения и обработки физических устройств, возможностью создания простых схем машины, возможностью организации контроля и некоторыми другими соображениями. Необходимо отметить, что выбор физических устройств и способов кодирования представляет собой сложную задачу, которая не имеет однозначного решения. Этим объясняется боль-шов разнообразие способов представления и кодирования информации в существующих моделях ЭКВМ. Рассмотрим наиболее распространенные из них.  

Какие способы кодирования информации вам известны.  

Различные более хитрые способы кодирования десятичных цифр внутри тетрады обусловлены избыточностью кодирования и применяются для автоматического обнаружения ошибок и сбоев в вычислениях.  

Представлены некоторые способы кодирования цифровых сигналов, получаемых из аналоговых при аналого-цифровых преобразованиях. Эти способы учитывают особенности и свойства аналого-цифровых преобразований и рассматриваемых исходных аналоговых сигналов. Показано, что такой учет приводит к существенному сокращению длины кодовых слов.  

Излагаются некоторые способы кодирования цифровых сигналов, отвечающих аналоговым сигналам с полным амплитудным ограничением. Эти способы основаны на принципе локального кодирования Лупанова и учитывают особенности и свойства как исходных аналоговых сигналов, так и применяемых аналого-цифровых преобразований. Проведенный в работе анализ получающихся кодов показывает, что представленные способы кодирования позволяют добиться существенного сжатия, информации - в смысле сокращения длин кодов.  

Применяемые программные языки и способы кодирования этих языков для нанесения на программоноситель зависят прежде всего от той системы счисления, в которой задается станку числовая информация, определяющая требуемые размеры перемещений его рабочих органов, задаваемые каждым кадром программы.  

Для отрицательных чисел применяют способы кодирования прямой, дополнительный и обратный коды. При этом заметим, что при выбранном ранее способе кодирования знаков чисел двоичными цифрами (плюс цифрой 0, а минус цифрой 1) любой код положительного числа совпадает с самим числом.  


Государственное образовательное учреждение
Среднего профессионального образования
Курганинский аграрно-технологический техникум.


Реферат

Тема: «Современные способы кодирования информации в вычислительной технике».

Подготовила : Аванесян Вероника
Аркадьевна
Учащаяся группы № 6 «А»
Проверил : Ткачев Сергей
Николаевич

Оценка ______________

г. Курганинск
2011-2012 учебный год

Содержание:

1. Введение
2. История кодирования информации
3. Способы кодирования информации
4.Кодирование текстовой информации
5. Кодирование графической информации
6. Кодирование звуковой информации
7. Заключение и выводы
8. Список используемой литературы

Введение:

Кодирование. Основные понятия и определения

Рассмотрим основные понятия, связанные с кодированием информации. Для передачи в канал связи сообщения преобразуются в сигналы. Символы, при помощи которых создаются сообщения, образуют первичный алфавит, при этом каждый символ характеризуется вероятностью его появления в сообщении. Каждому сообщению однозначно соответствует сигнал, представляющий определенную последовательность элементарных дискретных символов, называемых кодовыми комбинациями. Кодирование - это преобразование сообщений в сигнал, т.е. преобразование сообщений в кодовые комбинации. Код - система соответствия между элементами сообщений и кодовыми комбинациями. Кодер - устройство, осуществляющее кодирование. Декодер - устройство, осуществляющее обратную операцию, т.е. преобразование кодовой комбинации в сообщение. Алфавит - множество возможных элементов кода, т.е. элементарных символов (кодовых символов) X = {x i }, где i = 1, 2,..., m. Количество элементов кода - m называется его основанием . Для двоичного кода x i = {0, 1} и m = 2. Конечная последовательность символов данного алфавита называется кодовой комбинацией (кодовым словом). Число элементов в кодовой комбинации - n называется значностью (длиной комбинации). Число различных кодовых комбинаций (N = m n ) называется объемом или мощностью кода.
Если N 0 - число сообщений источника, то N ? N 0 . Множество состояний кода должно покрывать множество состояний объекта. Полный равномерный n - значный код с основанием m содержит N = m n кодовых комбинаций. Такой код называется примитивным.

Классификация кодов

Коды можно классифицировать по различным признакам:
1. По основанию (количеству символов в алфавите):
бинарные (двоичные m=2) и не бинарные (m ? 2).
2. По длине кодовых комбинаций (слов):
равномерные - если все кодовые комбинации имеют одинаковую длину;
неравномерные - если длина кодовой комбинации не постоянна.
3. По способу передачи:
последовательные и параллельные;
блочные - данные сначала помещаются в буфер, а потом передаются в канал и бинарные непрерывные .

4. По помехоустойчивости:
простые (примитивные, полные) - для передачи информации используют все возможные кодовые комбинации (без избыточности);
корректирующие (помехозащищенные) - для передачи сообщений используют не все, а только часть (разрешенных) кодовых комбинаций.
5. В зависимости от назначения и применения условно можно выделить следующие типы кодов:
Внутренние коды - это коды, используемые внутри устройств. Это машинные коды, а также коды, базирующиеся на использовании позиционных систем счисления (двоичный, десятичный, двоично-десятичный, восьмеричный, шестнадцатеричный и др.). Наиболее распространенным кодом в ЭВМ является двоичный код, который позволяет просто реализовать аппаратно устройства для хранения, обработки и передачи данных в двоичном коде. Он обеспечивает высокую надежность устройств и простоту выполнения операций над данными в двоичном коде. Двоичные данные, объединенные в группы по 4, образуют шестнадцатеричный код, который хорошо согласуется с архитектурой ЭВМ, работающей с данными кратными байту (8 бит).
Коды для обмена данными и их передачи по каналам связи . Широкое распространение в ПК получил код ASCII (American Standard Code for Information Interchange). ASCII - это 7-битный код буквенно-цифровых и других символов. Поскольку ЭВМ работают с байтами, то 8-й разряд используется для синхронизации или проверки на четность, или расширения кода. В ЭВМ фирмы IBM используется расширенный двоично-десятичный код для обмена информацией EBCDIC (Extended Binary Coded Decimal Interchange Code).
В каналах связи широко используется телетайпный код МККТТ (международный консультативный комитет по телефонии и телеграфии) и его модификации (МТК и др.).
При кодировании информации для передачи по каналам связи, в том числе внутри аппаратным трактам, используются коды, обеспечивающие максимальную скорость передачи информации, за счет ее сжатия и устранения избыточности (например: коды Хаффмана и Шеннона-Фано), и коды обеспечивающие достоверность передачи данных, за счет введения избыточности в передаваемые сообщения (например: групповые коды, Хэмминга, циклические и их разновидности).
Коды для специальных применений - это коды, предназначенные для решения специальных задач передачи и обработки данных. Примерами таких кодов является циклический код Грея, который широко используется в АЦП угловых и линейных перемещений. Коды Фибоначчи используются для построения быстродействующих и помехоустойчивых АЦП.
Основное внимание в курсе уделено кодам для обмена данными и их передачи по каналам связи.
ЦЕЛИ КОДИРОВАНИЯ:
1) Повышение эффективности передачи данных, за счет достижения максимальной скорости передачи данных.
2) Повышение помехоустойчивости при передаче данных.
В соответствии с этими целями теория кодирования развивается в двух основных направлениях:
1. Теория экономичного (эффективного, оптимального) кодирования занимается поиском кодов, позволяющих в каналах без помех повысить эффективность передачи информации за счет устранения избыточности источника и наилучшего согласования скорости передачи данных с пропускной способностью канала связи.
2. Теория помехоустойчивого кодирования занимается поиском кодов, повышающих достоверность передачи информации в каналах с помехами.

3. Способы представления кодов

В зависимости от применяемых методов кодирования, используют различные математические модели кодов, при этом наиболее часто применяется представление кодов в виде: кодовых матриц; кодовых деревьев; многочленов; геометрических фигур и т.д.

История кодирования информации:

Код - набор условных обозначений для представления информации.

Кодирование - процесс представления информации в виде кода (представление символов одного алфавита символами другого; переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки).

Обратное преобразование называется декодированием.

Для общения друг с другом мы используем код - русский язык.

При разговоре этот код передается звуками, при письме - буквами.

Водитель передает сигнал с помощью гудка или миганием фар.

Вы встречаетесь с кодированием информации при переходе дороги в виде сигналов светофора.

Таким образом, кодирование сводиться к использованию совокупности символов по строго определенным правилам.

Способ кодирования зависит от цели, ради которой оно осуществляется:

    сокращение записи;
    засекречивание (шифровка) информации;
    удобство обработки;
    и т. п.

Существуют три основных способа кодирования текста:
    графический – с помощью специальных рисунков или значков;
    числовой – с помощью чисел;
    символьный – с помощью символов того же алфавита, что и исходный текст.

Наиболее значимым для развития техники оказался способ представления информации с помощью кода, состоящего всего из двух символов: 0 и 1.

Для удобства использования такого алфавита договорились называть любой из его знаков «бит» (от английского « bi nary digi t » -двоичный знак ).

Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т.п.).

Двоичные числа очень удобно хранить и передавать с помощью электронных устройств.

Например, 1 и 0 могут соответствовать намагниченным и ненамагниченным участкам диска; нулевому и ненулевому напряжению; наличию и отсутствию тока в цепи и т.п.

Поэтому данные в компьютере на физическом уровне хранятся, обрабатываются и передаются именно в двоичном коде.

Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием .

Таким образом, двоичный код является универсальным средством кодирования информации.

Кодирование текстовой информации


Если каждому символу алфавита сопоставить определенное целое число (например, порядковый номер), то с помощью двоичного кода можно кодировать и текстовую информацию. Для хранения двоичного кода одного символа выделен 1 байт = 8 бит.

Учитывая, что каждый бит принимает значение 0 или 1, количество их возможных сочетаний в байте равно

Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов .

Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, графические символы и т.д.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111.

Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.

Важно, что присвоение символу конкретного кода - это вопрос соглашения, которое фиксируется в кодовой таблице .

В системе ASCII закреплены две таблицы кодирования - базовая и расширенная .

Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 33 кода (с 0 до 32) соответствуют не символам, а операциям (перевод строки, ввод пробела и т. д.).

Коды с 33 по 127 являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Коды с 128 по 255 являются национальными, т.е. в национальных кодировках одному и тому же коду соответствуют различные символы.



Тогда слово COMPUTER с помощью ASCII таблицы кодируется следующим образом:


C

O

M

P

U

T

E

R

67

79

77

80

85

84

69

82

01000011

01001111

01001101

01010000

01010101

01010100

01000101

01010010

С распространением современных информационных технологий в мире возникла необходимость кодировать символы алфавитов других языков: японского, корейского, арабского, хинди, а также других специальных символов.

На смену старой системе пришла новая универсальная – UNICODE , в которой один символ кодируется не одним, а двумя байтами.

В настоящее время существует много различных кодовых таблиц (DOS, ISO, WINDOWS, KOI8-R, KOI8-U, UNICODE и др.), поэтому тексты, созданные в одной кодировке, могут не правильно отображаться в другой.

Кодирование графической информации


Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые, в свою очередь, содержат определенное количество точек.

Давайте посмотрим на экран компьютера через увелечительное стекло.

В зависимости от марки и модели техники мы увидим либо множество разноцветных прямоугольничков, либо множество разноцветных кружочков.

И те, и другие группируются по три штуки, причем одного цвета, но разных оттенков.

Они называются ПИКСЕЛЯМИ (от английского PICture"s ELement ).

Пиксели бывают только трех цветов - зеленого, синего и красного.

Другие цвета образовываются при помощи смешения цветов.

Рассмотрим самый простой случай - каждый кусочек пикселя может либо гореть (1), либо не гореть (0).

Тогда мы получаем следующий набор цветов:
Из трех цветов можно получить восемь комбинаций.

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности, тогда количество различных вариантов их сочетаний, дающих разные краски и оттенки, увеличивается.

Шестнадцатицветная палитра получается при использовании 4-разрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно.

Число цветов, воспроизводимых на экране монитора (N ), и число бит, отводимых в видеопамяти на каждый пиксель (I ), связаны формулой:

Величину I называют битовой глубиной или глубиной цвета.

Чем больше битов используется, тем больше оттенков цветов можно получить.

Итак, любое графическое изображение на экране можно закодировать c помощью чисел, сообщив, сколько в каждом пикселе долей красного, сколько - зеленого, а сколько - синего цветов.

Также графическая информация может быть представлена в виде векторного изображения.

Векторное изображение представляет собой графический объект, состоящий из элементарных отрезков и дуг.

Положение этих элементарных объектов определяется координатами точек и длиной радиуса.

Для каждой линии указывается ее тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет.

Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

Качество изображения определяется разрешающей способностью монитора, т.е. количеством точек, из которых оно складывается.

Чем больше разрешающая способность, т.е. чем больше количество строк растра и точек в строке, тем выше качество изображение.

Кодирование звуковой информации


С начала 90-х годов персональные компьютеры получили возможность работать со звуков
и т.д.................

Кодирование информации. В процессе преобразования информации из одной формы представления (знаковой системы) в другую осуществляется кодирование. Средством кодирования служит таблица соответствия, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре выполняется его кодирование, т. е. преобразование в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс - декодирование, когда из компьютерного кода знак преобразуется в графическое изображение.

Кодирование изображений и звука. Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Примером аналогового представления графической информации может служить, скажем, живописное полотно, цвет которого изменяется непрерывно, а дискретного - изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.

Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного - аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Графическая и звуковая информация из аналоговой формы в дискретную преобразуется путем дискретизации, т. е. разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация - это преобразование непрерывных изображений и звука в набор дискретных значений, каждому из которых присваивается значение его кода.

Кодирование информации в живых организмах. Генетическая информация определяет строение и развитие живых организмов и передается по наследству. Хранится генетическая информация в клетках организмов в структуре молекул ДНК (дезоксирибонукле-иновой кислоты). Молекулы ДНК состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит.

Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т. д.

6. Основные понятия темы «Информация и управление»: числовое и символьное кодирование информации

Кодирование числовой информации.

Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.

Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.

Кодирование текстовой информации

В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.

10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.

Единицы измерения информации.

1 байт = 8 бит

1 Кбайт = 1024 байтам

1 Мбайт = 1024 Кбайтам

1 Гбайт = 1024 Мбайтам

1 Тбайт = 1024 Гбайтам

Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой

Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange- американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.

одирование символьной (текстовой) информации.

Основная операция, производимая над отдельными символами текста - сравнение символов.

При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.

Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.

Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.

Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.

Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.

7.Основные понятия темы «Информация и управление»: графическое кодирование информации.

Кодирование графической информации.

Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).

Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения

Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.

Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.

Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.

Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.

В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.

Качество изображения будет тем выше, чем «плотнее» расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.

Для черно-белого изображения код цвета каждого пикселя задается одним битом.

Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.

Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.

8 Основные понятия темы «Информация и управление»: алфавит, код

Алфавит - упорядоченный набор символов, используемый для кодирования сообщений на некотором языке.

Мощность алфавита - количество символов алфавита.
Двоичный алфавит содержит 2 символа, его мощность равна двум.
Сообщения, записанные с помощью символов ASCII, используют алфавит из 256 символов. Сообщения, записанные по системе UNICODE, используют алфавит из 65 536 символов.

С позиций computer science носителями информации являются любые последовательности символов, которые хранятся, передаются и обрабатываются с помощью компьютера. Согласно Колмогорову, информативность последовательности символов не зависит от содержания сообщения, алфавитный подход является объективным, т.е. он не зависит от субъекта, воспринимающего сообщение.

9 Основные понятия измерения информации: бит, байт, килобайт, мегабайт

Бит, Байт, Килобайт, Мегабайт, Гигабайт – это и есть единицы измерения информации.

Правда, в компьютерных исчислениях в 1 килобайте не 1000 байт, а 1024. Почему столько? Информация в компьютере представлена в двоичном виде и принято считать, что килобайт - это 2 в десятой степени байта или 1024 байт.
Ниже представлены общепринятые единицы.

10 Количественное и качественное измерение информации.

11 Алфавитный и содержательный подходы к измерению информации



В продолжение темы:
Android

Популярная социальная сеть ВКонтакте позволяет находить новых друзей и держать контакт со всеми близкими. Помимо этого, каждый пользователь может делиться собственными...