Тип батареи перезаряжаемая li ion. Типы современных литиевых аккумуляторных батарей

В данное время широко распространены li ion аккумуляторы и Li-pol (литий-полимерные).

Различия между ними состоит в электролите. В первом варианте в качестве его используется гелий, во втором – насыщенный раствором, содержащим литий, полимер. Сегодня, благодаря популярности автомобилей на электродвигателях остро стоит вопрос поиска идеального типа аккумулятора li ion, который оптимально подойдет для такого транспорт.

Состоит он, как и другие аккумуляторы, из анода (пористый углерод) и катода (литий), разделяющего их сепаратора и проводника — электролита. Процесс разрядки сопровождается переходом «анодных» ионов на катод через сепаратор и электролит. Их направление изменяется на противоположное во время зарядки (рисунок ниже).

Ионы циркулируют в процессе разрядки и зарядки ячейки между разноименно заряженными электродами.

Ионные батареи имею катод, выполненный из разных металлов, что является их главным отличием. Производители, используя для электродов разные материалы, улучшают характеристики аккумуляторов.

Но, случается, что улучшение одних характеристик приводит к резкому ухудшению других. Например, при оптимизации емкости, необходимой, чтобы увеличить время поездки, можно увеличить мощность, безопасность, снизить негативное воздействие на окружающую среду. Одновременно можно уменьшить ток нагрузки, увеличить стоимость или размер аккумуляторной батареи.

Познакомиться с главными параметрами разных типов литиевых батарей (литий-марганцевых, литий – кобальтовых, литий – фосфатных и никель-марганец – кобальтовых) можно в таблице:

Правила для пользователей электротранспортом

Емкость таких батарей при длительном хранении практически не уменьшается. Разряжаются li ion аккумуляторы всего на 23% , если хранится при температуре 60 градусов на протяжении 15 лет. Именно благодаря этим свойствам их широко применяют в электротранспортных технологиях.

Для электрического транспорта подходят литий – ионные батареи, имеющие полноценную систему управления, встроенную в корпус.

По этой причине пользователи при эксплуатации забывают об основных правилах, способных продлению их срока службы:

  • аккумулятор необходимо полностью зарядить сразу после его покупки в магазине, поскольку в процессе производства заряжаются электроды на 50%. Поэтому доступная емкость уменьшится, т.е. время работы, если отсутствует первоначальная зарядка;
  • нельзя допускать полной разрядки батареи, чтобы сохранить ее ресурс;
  • заряжать батарею необходимо после каждого выезда, пусть даже заряд еще остался;
  • не нагревать аккумуляторы, поскольку высокие температуры способствуют процессу старения. Для того, чтобы использовать ресурс максимально, нужно эксплуатацию проводить при оптимальной температуре, которой является 20-25 градусов. Следовательно, вблизи теплового источника батарею нельзя хранить;
  • в холодное время рекомендуется завернуть аккумулятор в полиэтиленовый пакет с вакуумным замком, чтобы хранить при 3-4 градусах, т.е. в помещении не отапливаемом. Заряд составлять должен хотя бы 50% от полного;
  • после того, как аккумулятор эксплуатировался при отрицательных температурах, нельзя его заряжать, не выдержав некоторое время при температуре комнатной, т. е. его требуется прогреть;
  • заряжать батарею нужно от зарядного устройства, поставляемого в комплекте.

ПУ этих батарей несколько подвидов — литий – LiFePO4 (железо – фосфатные), использующие катод из фосфата железа. Характеристики их позволяют говорить об аккумуляторах, как о вершине технологий, используемых для производства батарей.

Основными их преимуществами являются:

  • количество циклов заряда-разряда, которое достигает 5000 до момента, когда емкость уменьшится на 20%;
  • длительный срок эксплуатации;
  • отсутствующий «эффект памяти»;
  • широкий температурный диапазон при неизменных рабочих характеристиках (300-700 градусов Цельсия);
  • химическая стабильность и термическая, повышающие безопасность.

Наиболее широко применяемые аккумуляторы

Среди множества наиболее распространены li ion аккумуляторы типоразмера 18650, выпускаемые пятью компаниями: LG, Sony, Panasonic, Samsung, Sanyo, заводы которых находятся в Японии, Китае, Малайзии и Южной Карее. Планировалось, что использоваться li ion аккумуляторы 18650 будут в ноутбуках. Однако, благодаря удачному формату их применяют в моделях на радиоуправлении, электромобилях, фонарях и т.д.

Как всякий качественный товар, такие аккумуляторы имеют много подделок, поэтому, чтобы продлить срок эксплуатации прибора, приобретать нужно только батареи известных брендов.

Защищенные и незащищенные литий – ионные батареи

Важно для литиевых батарей также, защищенными они являются или нет. Рабочий диапазон первых — 4,2-2,5В (применяются в девайсах, рассчитанных на работу с литий-ионными источниками): светодиодных фонарях, бытовой маломощной технике и пр.

В электроинструментах, велосипедах с электродвигателями, ноутбуках, видео- и фототехнике применяются незащищенные аккумуляторы, управляемые контроллером.

Что необходимо знать о литий — ионных батареях?

В первую очередь, ограничения, которые нужно соблюдать при эксплуатации:

  • напряжение перезарядки (максимальное) не может быть выше 4,35В;
  • минимальное же его значение не может пускаться ниже отметки в 2,3 В;
  • ток разряда не должен превышать более чем в два раза, значение емкости. Если значение последней — 2200мАЧ, величина тока максимальная составляет 4400 мА.

Функции, выполняемые контроллером

Для чего нужен контроллер заряда li ion аккумулятора? Он выполняет несколько функций:

  • подает ток, компенсирующий саморазряд. Его величина меньше, чем максимальный ток заряда, но больше, чем ток саморазряда;
  • реализует эффективный алгоритм цикла заряд/разряд для конкретного аккумулятора;
  • компенсирует разницу энергетических потоков при одновременной зарядке и обеспечении энергией потребителя. К примеру, при зарядке и питании ноутбука;
  • измеряет при перегреве или переохлаждении температуру, предотвращая порчу батарее.

Изготавливают контроллер заряда li ion аккумулятора либо в виде встраиваемой в батарею микросхемы, либо как отдельное устройство.

Для зарядки батарей лучше использовать штатное зарядное устройство для 18650 li ion аккумуляторов, поставляемое в комплекте. Зарядное устройство для литиевых аккумуляторов 18650 обычно имеет индикацию уровня заряда. Чаще это светодиод, который показывает, когда идет заряд и его окончание.

На более продвинутых устройствах можно отслеживать на дисплее время, оставшееся до окончания заряда, текущее напряжение. Для аккумулятора 18650, емкость которого 2200мА, время зарядки составляет 2 часа.

Но, важно знать, каким током заряжать li ion аккумулятор 18650. Он должен составлять половину номинальной емкости, т.е., если она составляет 2000 mAh, то ток оптимальный – 1А. Заряжая аккумулятор высоким током, быстро наступает его деградация. При использовании низкого тока потребуется больше времени.

Видео: Как заряжать аккумулятор Li ion зарядное своими руками

Схема устройства для зарядки аккумуляторов

Выглядит она следующим образом:

Отличается схема надежностью и повторяемостью, а входящие детали являются недорогими и легкодоступными. Чтобы срок эксплуатации батареи увеличить, требуется грамотная зарядка li ion аккумуляторов: к концу зарядки напряжение должно уменьшаться.

После ее завершения, т.е. при достижении нулевой отметки током, должна остановиться зарядка li ion аккумулятора. Схема, приведенная выше, этим требованиям удовлетворяет: подключенный к зарядному устройству разряженный АКБ (загорается VD3), использует ток 300мА.

Об идущем процессе свидетельствует горящий светодиод VD1.Постепенно уменьшающийся до 30 мА ток, свидетельствует о зарядке аккумулятора. Об окончании процесса сигнализирует, загоревшийся светодиод VD2.

В схеме использован операционный усилитель LM358N (можно заменить его аналогом КР1040УД1 или же КР574УД2, отличающимся расположением выводов), а также транзистор VT1 S8550 9 светодиоды желтого, красного и зеленого цветов (1,5В).

Можно ли реанимировать аккумулятор?

После пары лет активной эксплуатации аккумуляторы катастрофически теряют емкость, создавая проблемы при пользовании любимым девайсом. Возможно ли, и как восстановить li ion аккумулятор пока пользователь занимается поиском замены?

Восстановление li ion аккумулятора возможно на время несколькими способами.

Если вздулась батарея, т.е. перестала держать заряд, значит, внутри скопились газы.

Тогда поступают следующим образом:

  • корпус батареи отсоединяют аккуратно от датчика;
  • отделяют электронный датчик;
  • находят под ним колпачок с управляющей электроникой и прокалывают его осторожно иглой;
  • затем, находят тяжелый плоский предмет, по площади больший, чем площадь батареи, использоваться который будет в качестве пресса (не применять тиски и аналогичные устройства);
  • положить батарею на горизонтальную плоскость, и придавить прессом, помня, что аккумулятор можно повредить, прикладывая чрезмерное усилие. Если же оно недостаточно, результата можно не достичь. Это самый ответственный момент;
  • осталось капнуть на отверстие эпоксидной смолой и припаять датчик.

Есть и другие способы, прочесть о которых можно на страницах Интернет.

Подобрать зарядное устройство можно на сайте http://18650.in.ua/chargers/ .

Видео: Li-ion аккумуляторы, советы по эксплуатации li-ion батарей

В 1991 году.

Энциклопедичный YouTube

  • 1 / 5

    Характеристики литий-ионных аккумуляторов зависят от химического состава составляющих компонентов и варьируются в следующих пределах:

    • напряжение единичного элемента:
      • номинальное : 3,7 (у аккумуляторов на максимальное напряжение 4,35 номинальное напряжение равно 3,8 ) (при разряде до середины ёмкости током, по величине равной пятой части ёмкости аккумулятора);
      • максимальное: 4,23 или 4,4 (у аккумуляторов на 4,35 );
      • минимальное: 2,5-2,75-3,0 (в зависимости от ёмкости и максимального напряжения);
    • удельная энергоёмкость : 110 … 243 Вт /кг ;
    • внутреннее сопротивление : 5 … 15 Ом / ;
    • число циклов заряд/разряд до достижения 80 % ёмкости : 600;
    • время быстрого заряда: 15 мин … 1 час ;
    • саморазряд при комнатной температуре: 3 % в месяц ;
    • ток нагрузки относительно ёмкости С представленной в :
      • постоянный: до 65С ;
      • импульсный: до 500С ;
      • оптимальный: до 1С ;
    • диапазон рабочих температур : от −20 °C до +60 °C (наиболее оптимальная +20 °C);

    Из-за превышения напряжения при заряжании аккумулятор может загореться, поэтому в корпус аккумуляторов встраивают контроллер заряда аккумуляторов , который защищает аккумулятор от превышения напряжения заряда. Также этот контроллер может опционально контролировать температуру аккумулятора, отключая его при перегреве, ограничивать глубину разряда и ток потребления. Тем не менее надо учитывать, что не все аккумуляторы снабжаются защитой. В целях снижения себестоимости или увеличения ёмкости производители могут не устанавливать её.

    Литиевые аккумуляторы имеют специальные требования при подключении нескольких банок последовательно. Зарядные устройства для таких многобаночных аккумуляторов снабжаются схемой балансировки  ячеек . Смысл балансировки в том, что электрические свойства банок могут немного отличаться, и какая-то банка достигнет полного заряда раньше других. При этом необходимо прекратить заряд этой банки, продолжая заряжать остальные. Эту функцию выполняет специальный узел балансировки аккумулятора. Он шунтирует заряженную банку так, чтобы ток заряда шёл мимо неё.

    Зарядные устройства могут поддерживать конечное напряжение заряда в диапазоне 4,05-4,2 для детектирования наличия аккумулятора.

    Устройство

    Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пористым сепаратором, пропитанным электролитом. Пакет электродов помещён в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъёмникам. Корпус иногда оснащают предохранительным клапаном, сбрасывающим внутреннее давление при аварийных ситуациях или нарушениях условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решётку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC 6 , оксиды (LiMnO 2) и соли (LiMn R O N) металлов.

    Первоначально в качестве отрицательных пластин применялся металлический литий , затем - каменноугольный кокс . В дальнейшем стал применяться графит . Применение оксидов кобальта позволяет аккумуляторам работать при значительно более низких температурах, повышает количество циклов разряда/заряда одного аккумулятора. Распространение литий-железо-фосфатных аккумуляторов обусловлено их относительно низкой стоимостью. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system), - и специальным устройством заряда/разряда.

    В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов:

    • кобальтат лития LiCoO 2 и твёрдые растворы на основе изоструктурного ему никелата лития
    • литий-марганцевая шпинель LiMn 2 O 4
    • литий-феррофосфат LiFePO 4 .

    Электро-химические схемы литий-ионных аккумуляторов:

    • литий-кобальтовые LiCoO 2 + 6C → Li 1-x CoO 2 + LiC 6
    • литий-ферро-фосфатные LiFePO 4 + 6C → Li 1-x FePO 4 + LiC 6

    Благодаря низкому саморазряду и большому количеству циклов заряда/разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом, помимо системы СКУ они укомплектовываются инверторами (преобразователи напряжения).

    Преимущества

    • Высокая энергетическая плотность (ёмкость).
    • Низкий саморазряд.
    • Не требуют обслуживания.

    Недостатки

    1. Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Этот недостаток удалось окончательно устранить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные зарядные устройства для литий-ионных аккумуляторов предотвращают перезаряд и перегрев вследствие слишком интенсивного заряда.

    Потеря ёмкости при хранении :

    Температура, ⁰C С 40 % зарядом, % за год Со 100 % зарядом, % за год
    0 2 6
    25 4 20
    40 15 35
    60 25 40 % за три месяца

    Разрядка в условиях низких температур приводит к снижению отдаваемой энергии, в особенности при температурах ниже 0 ⁰C. Так, снижение запаса отдаваемой энергии при понижении температуры от +20 ⁰C до +4 ⁰C приводит к уменьшению отдаваемой энергии на ~5-7 %, дальнейшее понижение температуры разрядки ниже 0 ⁰C приводит к потере отдаваемой энергии на десятки процентов и может приводить к преждевременному исчерпанию ресурса. Химия литий-ионных аккумуляторов более чувствительна к температурам заряжания, и оно оптимально при температурах ~ +20 ⁰C, а при температурах ниже +5 ⁰C не рекомендовано.

    Эффект памяти

    По результатам исследований учёных Института Пауля Шерера (Швейцария) было обнаружено, что литий-ионные аккумуляторы имеют эффект памяти . Как отмечают авторы исследования, для Li-Ion аккумуляторов:

    …фактически эффект крохотный: относительное отклонение в напряжении составляет всего несколько единиц на тысячу.

    Оригинальный текст (англ.)

    The effect is in fact tiny: the relative deviation in voltage is just a few parts per thousand.

    Речь идёт исключительно о принципиальном наличии эффекта, а не о его сколько-нибудь существенном влиянии на работу аккумулятора.

    Ключевой идеей исследования был поиск эффекта как такового.

    Оригинальный текст (англ.)

    But the key was the idea of looking for it at all.

    Как показало исследование, частые циклы неполной зарядки и последующей разрядки приводят к возникновению отдельных «микроэффектов памяти», которые затем суммируются. Это происходит потому, что основой работы батареи являются процессы высвобождения и обратного захвата ионов лития, динамика которых ухудшается в случае неполной зарядки .

    Во время заряжания ионы лития один за другим покидают частицы литий-феррофосфата, размер которых составляет десятки микрометров. Катодный материал начинает разделяться на частицы с разным содержанием лития. Заряжание батареи происходит на фоне возрастания электрохимического потенциала. В определённый момент он достигает предельного значения. Это приводит к ускорению высвобождения оставшихся ионов лития из катодного материала, но они уже не меняют суммарное напряжение батареи.

    Если батарея не будет полностью заряжена, то на катоде останется некоторое число частиц, близких к пограничному состоянию. Они практически достигли барьера высвобождения ионов лития, но не успели его преодолеть. При разряде свободные ионы лития стремятся вернуться на место и рекомбинировать с ионами феррофосфата. Однако на поверхности катода их также встречают частицы в пограничном состоянии, уже содержащие литий. Обратный захват затрудняется, и нарушается микроструктура электрода.

    В настоящее время просматриваются два пути решения проблемы: внесение изменений в алгоритмы работы системы управления батареями и разработка катодов с увеличенной площадью поверхности.

    Большую роль в долговечности и исправной работе аккумулятора играет его эксплуатация. Многие специалисты выделяют два простых правила, которые помогут продлить срок службы батареи:

    Старение

    Температурный режим заряда литий-полимерных и литий-ионных аккумуляторов влияет на их ёмкость: ёмкость снижается при зарядке на холоде или в жару. Глубокий разряд полностью выводит из строя литий-ионный аккумулятор. Также на жизненный цикл аккумуляторов влияет глубина его разряда перед очередной зарядкой и зарядка токами выше установленных производителем. Крайне чувствительны они и к напряжению зарядки. Если его повысить всего на 4 %, то аккумуляторы будут вдвое быстрее терять ёмкость от цикла к циклу. Ток зарядки зависит от разницы напряжений между аккумулятором и зарядным устройством и от сопротивления как самого аккумулятора, так и подводимых к нему проводов. Поэтому увеличение напряжения зарядки на 4 % может приводить к увеличению тока зарядки в 10 раз. Это отрицательно сказывается на аккумуляторе. Он может перегреваться и деградировать. Оптимальные условия хранения Li-ion-аккумуляторов достигаются при 40-процентном заряде от ёмкости аккумулятора и температуре 0…10 °C . Литиевые аккумуляторы стареют, даже если не используются. Через 2 года батарея теряет около 20 % ёмкости. Соответственно, нет необходимости покупать аккумулятор «про запас» или чрезмерно увлекаться «экономией» его ресурса. При покупке стоит посмотреть на дату производства, чтобы знать, сколько данный источник питания уже пролежал на складе. В случае если с момента изготовления прошло более двух лет, лучше воздержитесь от покупки.

    Снижение ёмкости при низких температурах

    При снижении температуры окружающего воздуха ниже 0 °C происходит снижение мощности литий-ионного аккумулятора до 40-50 % . Владельцы носимой электроники менее всего подвержены отрицательным последствиям использования техники в условиях низких температур, а сегменты промышленности, задействованные в производстве беспилотных летательных аппаратов, роботизированных систем и космической техники, крайне нуждаются в новых подогреваемых аккумуляторах. Для решения этой проблемы созданы конструкции аккумуляторов с внутренним подогревом .

    Взрывоопасность

    Литиевые аккумуляторы изредка проявляют склонность к взрывному самовозгоранию. Интенсивность горения даже от миниатюрных аккумуляторов такова что может приводить к тяжким последствиям. Авиакомпании и международные организации принимают меры к ограничению перевозок литиевых аккумуляторов и устройств с ними на авиатранспорте.

    Самовозгорание литиевого аккумулятора очень плохо поддается тушению традиционными средствами. В процессе термического разгона неисправного или поврежденного аккумулятора происходит не только выделение запасенной электрической энергии, но и ряд химических реакций, выделяющих энергию для саморазогрева, кислород и горючие газы. Потому вспыхнувший аккумулятор способен гореть без доступа воздуха и для его тушения непригодны средства изоляции от атмосферного кислорода. Более того, металлический литий активно реагирует с водой с образованием горючего газа водорода, потому тушение литиевых аккумуляторов водой эффективно только для тех видов аккумуляторов, где масса литиевого электрода невелика. В целом тушение загоревшегося литиевого аккумулятора неэффективно. Цель тушения снизить температуру аккумулятора и предотвратить распространение пламени

    Который широко распространён в современной бытовой электронной технике и находит свое применение в качестве источника энергии в электромобилях и накопителях энергии в энергетических системах. Это самый популярный тип аккумуляторов в таких устройствах как сотовые телефоны , ноутбуки , электромобили , цифровые фотоаппараты и видеокамеры . Первый литий-ионный аккумулятор выпустила корпорация Sony в 1991 году .

    Характеристики

    В зависимости от электро-химической схемы литий-ионные аккумуляторы показывают следующие характеристики:

    • Напряжение единичного элемента 3,6 В.
    • Максимальное напряжение 4,2 В, минимальное 2,5–3,0 В. Устройства заряда поддерживают напряжение в диапазоне 4,05–4,2 В
    • Энергетическая плотность : 110 … 230 Вт*ч/кг
    • Внутреннее сопротивление : 5 … 15 мОм/1Ач
    • Число циклов заряд/разряд до потери 20 % ёмкости: 1000-5000
    • Время быстрого заряда: 15 мин - 1 час
    • Саморазряд при комнатной температуре: 3 % в месяц
    • Ток нагрузки относительно ёмкости (С):
      • постоянный - до 65С, импульсный - до 500С
      • наиболее приемлемый: до 1С
    • Диапазон рабочих температур: −0 ... +60 °C(при отрицательных температурах заряжание батарей невозможен)

    Устройство

    Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделенных пропитанными электролитом пористыми сепараторами. Пакет электродов помещен в герметичный корпус, катоды и аноды подсоединены к клеммам-токосъемникам. Корпус имеет предохранительный клапан, сбрасывающий внутреннее давление при аварийных ситуациях и нарушении условий эксплуатации. Литий-ионные аккумуляторы различаются по типу используемого катодного материала. Переносчиком тока в литий-ионном аккумуляторе является положительно заряженный ион лития, который имеет способность внедряться (интеркалироваться) в кристаллическую решетку других материалов (например, в графит, окислы и соли металлов) с образованием химической связи, например: в графит с образованием LiC6, окислы (LiMO 2) и соли (LiM R O N) металлов. Первоначально в качестве отрицательных пластин применялся металлический литий, затем - каменноугольный кокс. В дальнейшем стал применяться графит. В качестве положительных пластин до недавнего времени применяли оксиды лития с кобальтом или марганцем, но они все больше вытесняются литий-ферро-фосфатными, которые оказались безопасны, дешевы и нетоксичны и могут быть подвержены утилизации, безопасной для окружающей среды. Литий-ионные аккумуляторы применяются в комплекте с системой контроля и управления - СКУ или BMS (battery management system) и специальным устройством заряда/разряда. В настоящее время в массовом производстве литий-ионных аккумуляторов используются три класса катодных материалов: - кобальтат лития LiCoO 2 и твердые растворы на основе изоструктурного ему никелата лития - литий-марганцевая шпинель LiMn 2 O 4 - литий-феррофосфат LiFePO 4 . Электро-химические схемы литий-ионных аккумуляторов: литий-кобальтовые LiCoO2 + 6xC → Li1-xCoO2 + xLi+C6 литий-ферро-фосфатные LiFePO4 + 6xC → Li1-xFePO4 + xLi+C6

    Благодаря низкому саморазряду и большому количеству циклов заряда-разряда, Li-ion-аккумуляторы наиболее предпочтительны для применения в альтернативной энергетике. При этом помимо системы BMS (СКУ) они укомплектовываются инверторами (преобразователи напряжения).

    Преимущества

    • Высокая энергетическая плотность.
    • Низкий саморазряд.
    • Отсутствие эффекта памяти .
    • Не требуют обслуживания.

    Недостатки

    Аккумуляторы Li-ion первого поколения были подвержены взрывному эффекту. Это объяснялось тем, что в них использовался анод из металлического лития, на котором в процессе многократных циклов зарядки/разрядки возникали пространственные образования (дендриты), приводящие к замыканию электродов и, как следствие, возгоранию или взрыву. Эту проблему удалось окончательно решить заменой материала анода на графит. Подобные процессы происходили и на катодах литий-ионных аккумуляторов на основе оксида кобальта при нарушении условий эксплуатации (перезарядке). Литий-ферро-фосфатные аккумуляторы полностью лишены этих недостатков. Кроме того, все современные литий-ионные аккумуляторы снабжаются встроенной электронной схемой, которая предотвращает перезаряд и перегрев вследствие слишком интенсивного заряда.

    Аккумуляторы Li-ion при неконтролируемом разряде могут иметь более короткий жизненный цикл в сравнении с другими типами аккумуляторов. При полном разряде литий-ионные аккумуляторы теряют возможность заряжаться при подключении зарядного напряжения. Эта проблема решаема путем приложения импульса более высокого напряжения, но это отрицательно сказывается на дальнейших характеристиках литий-ионных аккумуляторов. Максимальный срок «жизни» Li-ion аккумулятора достигается при ограничении заряда сверху на уровне 95 % и разряда 15–20 %. Такой режим эксплуатации поддерживается системой контроля и управления BMS (СКУ), которая входит в комплект любого литий-ионного аккумулятора.

    Оптимальные условия хранения Li-ion-аккумуляторов достигаются при заряде на уровне 40–70 % от ёмкости аккумулятора и температуре около 5 °C. При этом низкая температура является более важным фактором для малых потерь ёмкости при долговременном хранении. Средний срок хранения (службы) литий-ионного АКБ составляет в среднем 36 месяцев, хотя может колебаться в интервале от 24 до 60 месяцев.

    Потеря ёмкости при хранении :

    температура с 40 % зарядом со 100 % зарядом
    0 ⁰C 2 % за год 6 % за год
    25 ⁰C 4 % за год 20 % за год
    40 ⁰C 15 % за год 35 % за год
    60 ⁰C 25 % за год 40 % за три месяца

    Согласно всем действующим регламентам хранения и эксплуатации литий-ионных аккумуляторов, для обеспечения длительного хранения необходимо подзаряжать их до уровня 70 % ёмкости 1 раз в 6–9 месяцев.

    См. также

    Примечания

    Литература

    • Хрусталёв Д. А. Аккумуляторы. М: Изумруд, 2003.
    • Юрий Филипповский Мобильное питание. Часть 2. (RU). КомпьютерраLab (26 мая 2009). - Подробная статья о Li-ion аккумуляторах.. Проверено 26 мая 2009.

    Ссылки

    • ГОСТ 15596-82 Термины и определения.
    • ГОСТ 61960-2007 Аккумуляторы и аккумуляторные батареи литиевые
    • Литий-ионные и литий-полимерные аккумуляторы. iXBT (2001 г.)
    • Литий-ионные аккумуляторные батареи отечественного производства

    Среди самых современных аккумуляторов особое место занимают литиевые. В химии литий из металлов самый активный.

    Он обладает огромным ресурсом хранения энергии. 1 кг лития способен хранить 3860 ампер-часов. Хорошо известный цинк сильно отстаёт. У него этот показатель равен 820 ампер-часов.

    Элементы на основе лития могут вырабатывать напряжение до 3,7V. Но лабораторные образцы способны вырабатывать напряжение около 4.5V.

    В современных литиевых аккумуляторах чистый литий не применяется.

    Сейчас распространены 3 типа литиевых аккумуляторов:

      Литий-ионные (Li-ion ). Номинальное напряжение (U ном.) - 3,6V;

      Литий-полимерные (Li-Po , Li-polymer или «липо»). U ном. - 3,7V;

      Литий-железо фосфатные (Li-Fe или LFP ). U ном. - 3,3V.

    Все эти типы литиевых аккумуляторов различаются материалом катода или электролита. В Li-ion используется катод из кобальтата лития LiCoO 2 , в Li-Po применён электролит из гелеобразного полимера, а в Li-Fe используется катод из литий-ферро-фосфата LiFePO 4 .

    Любой литиевый аккумулятор (или устройство в котором он работает) оснащён небольшой электронной схемой - контроллером заряда/разряда. Так как аккумуляторы на основе лития очень чувствительны к перезаряду и глубокому разряду, это необходимо. Если "расковырять" любой литиевый аккумулятор от сотового телефона, то в нём можно обнаружить небольшую электронную схему - это и есть защитный контроллер (Protection IC ).

    Если встроенного контроллера (или супервизора заряда) в литиевой батареи нет, то такой аккумулятор называют незащищённым. В таком случае контроллер встроен в прибор, который питается от такой батареи, а зарядка возможна только от прибора или от специального зарядного устройства.

    На фото показан незащищённый Li-Po аккумулятор Turnigy 2200 mAh 3C 25C Lipo Pack . Данная акк.батарея состоит из 3 последовательно включенных ячеек (3C - 3 cell) по 3,7V и поэтому имеет балансировочный разъём. Продолжительный ток разряда может достигать 25С, т.е. 25 * 2200 мА = 55000 мА = 55 А! А кратковременный ток разряда (10 сек.) - 35С!

    Для литиевых батарей, которые представляют собой несколько последовательно включенных ячеек, требуется сложное зарядное устройство, оснащённое балансиром. Такой функционал реализован, например, в таких универсальных зарядных устройствах , как Turnigy Accucell 6 и IMAX B6.

    Балансир нужен для того, чтобы во время заряда составной литиевой батареи выровнять напряжение на отдельных ячейках. Из-за различий между ячейками одни могут заряжаться быстрее, а другие медленнее. Поэтому применяется специальная схема шунтирования зарядного тока.

    Вот такую распайку имеют балансировочный и силовой шлейф у LiPo-аккумулятора на 11,1V.

    Как известно, перезаряд ячейки литиевого аккумулятора (особенно Li-Polymer) свыше 4,2V может привести к взрыву или самовозгоранию. Поэтому во время заряда необходимо контролировать напряжение на каждой ячейке составной батареи аккумулятора!

    Правильная зарядка литиевых аккумуляторов.

    Литиевые аккумуляторы (Li-ion, Li-Po, Li-Fe) заряжаются по методу CC/CV («постоянный ток/постоянное напряжение»). Метод заключается в том, что сначала, когда напряжение на элементе мало, его заряжают постоянным током (constant current) определённой величины. При достижении напряжения на элементе (например, до 4,2V - зависит от типа аккумулятора), контроллер заряда поддерживает постоянное напряжение (constant voltage) на нём.

    Первая стадия заряда литиевого аккумулятора - CC - реализуется за счёт обратной связи. Контроллер так подбирает напряжение на элементе, чтобы ток заряда был строго постоянной величины.

    В течение первой стадии заряда литиевый аккумулятор накапливает большую часть мощности (60 - 80 %).

    Вторая стадия заряда - CV - начинается тогда, когда напряжение на элементе достигает определённого порогового уровня (например, в 4,2V). После этого контроллер просто поддерживает постоянное напряжение на элементе и отдаёт ему тот ток, который ему необходим. К концу заряда ток снижается до значения 30 - 10 мА. При таком токе элемент считается заряженным.

    Во время второй стадии аккумулятор накапливает оставшиеся 40 - 20 % мощности.

    Стоит отметить, что превышение порогового напряжения на литиевом аккумуляторе чревато его чрезмерным перегревом и даже взрывом!

    При зарядке литиевых аккумуляторов рекомендуется помещать их в невозгораемый пакет. Это особенно актуально для аккумуляторов, которые не имеют специального бокса. Например, такие, которые применяются в радиоуправляемых моделях (авто-, авиа- моделирование).

    Недостатки литий-ионных аккумуляторов.

      Основным и самым пугающим недостатком аккумуляторов на основе лития, я бы назвал их пожароопасность при превышении рабочего напряжения, перегреве, неправильном заряде и безграмотной эксплуатации. Особенно много нареканий относительно литий-полимерных (Li-Polymer) аккумуляторов. Однако, литий-железо-фосфатные (Li-Fe) аккумуляторы не имеют такой негативной особенности - они пожаробезопасны.

      Также литиевые аккумуляторы очень боятся холода - быстро теряют свою ёмкость и перестают заряжаться. Это относится к Li-ion и Li-Po аккумуляторам. Литий-железо-фосфатные (Li-Fe) аккумуляторы более устойчивы к морозу. Собственно, это одно из положительных качеств Li-Fe аккумуляторов.

      Недостатком литиевых аккумуляторов является и то, что они требуют наличия специального контроллера заряда - электронной схемы. А в случае составной аккумуляторной батареи и балансира.

      При глубоком разряде литиевые аккумуляторы теряют свои первоначальные свойства. Особенно глубокого разряда боятся Li-ion и Li-Po аккумуляторы. Даже после восстановления такой аккумулятор будет иметь меньшую ёмкость.

      Если литиевый аккумулятор не будет "работать" долгое время, то сначала напряжение на нём снизится до порогового уровня (как правило 3,2-3,3V). Электронная схема полностью отключит ячейку аккумулятора, а затем начнётся глубокий разряд. Если напряжение на ячейке снизится до 2,5V, то это может привести к выходу её из строя.

      Поэтому стоит время от времени подзаряжать аккумуляторы ноутбуков, сотовых телефонов, mp3-плееров во время длительного простоя.

    Обычно срок службы рядового литиевого аккумулятора составляет 3 - 5 лет. Спустя 3 года ёмкость аккумулятора начинает довольно заметно уменьшаться.


    Прогресс идет вперед, и на смену традиционно используемым NiCd (никель-кадмиевым) и NiMh (никель-металлогидридным) всё чаще приходят литиевые аккумуляторы.
    При сравнимом весе одного элемента, литий имеет большую ёмкость, кроме того, напряжение элемента у них в три раза выше - 3,6 V на элемент, вместо 1,2 V.
    Стоимость литиевых аккумуляторов стала приближаться к обычным щелочным батареям, вес и размер намного меньше, да к тому же их можно и нужно заряжать. Производитель говорит, 300-600 циклов выдерживают.
    Размеры есть разные и подобрать нужный не составляет труда.
    Саморазряд настолько низкий, что лежат годами и остаются заряженными, т.е. устройство остается рабочим когда оно нужно.

    «С» значит Capacity

    Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
    Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
    Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

    А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

    Схема простого зарядного устройства на LM317


    Рис. 5.


    Схема с применением обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
    Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

    Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
    Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
    Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

    Надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
    Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

    Схема простого зарядного устройства на LTC4054


    Рис. 6.


    Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).


    Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

    Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
    Ток заряда до 800 мА.
    Оптимальное напряжение питания от 4,3 до 6 Вольт.
    Индикация заряда.
    Защита от КЗ на выходе.
    Защита от перегрева (снижение тока заряда при температуре больше 120°).
    Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

    Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле

    I=1000/R,
    где I - ток заряда в Амперах, R - сопротивление резистора в Омах.

    Индикатор разрядки литиевого аккумулятора

    Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.


    Рис. 8.


    Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

    Нюанс долговечности

    Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

    Эксплуатация и меры предосторожности

    Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
    1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
    2. Не доспускается короткое замыкание аккумулятора.
    3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
    5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
    7. Вредно хранение в разряженном состоянии.

    Невыполнение первых трех пунктов приводит к пожару, остальных - к полной или частичной потере ёмкости.

    Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления - создаётся впечатление, что ёмкость упала.
    По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

    Для не очень больших токов подходят старые аккумуляторы от сотовых.


    Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

    Где я применяю литиевые батареи

    Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

    Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

    Ставлю в светодиодные фонарики.

    В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

    Вообще ставлю везде, где получается, вместо батареек.

    Где я покупаю литий и полезности по теме

    Продаются . По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

    На счёт ёмкости китайцы обычно врут и она меньше написанной.


    Честные Sanyo 18650



В продолжение темы:
Android

Веб-сервисы в 1СВ данной статье будет рассмотрены вопросы интеграции 1С с уже существующими веб-сервисами и использование самой 1С как веб-сервиса. При этом под веб-сервисами...